摘要
在医学图像检测中,由于数据集经常存在每类样本数目不均衡的情况,使数据集样本出现长尾分布的问题,严重影检测模型的性能。针对网络在训练多类别不均衡数据集中训练时出现的过拟合现象,采用重加权的方式改进原有损失函数,并用CLAHE算法对X光图像进行预处理,以突出图像的内部细节,选用ResNext50网络作为特征提取网络。以covid-chestxray数据集作为实验用数据集,通过实验评估了模型的准确度、精确率、召回率和F1值,证实了该方法的有效性。
In medical image detection, the dataset often has a situation od class-imbalanced, which causes the long-tail distribution problem in the dataset samples and the performance of the detection model becomes seriously. This paper aims to solve the over-fitting problem of the network when training with multiple class-imbalance dataset, improving the original loss function by re-weight method, and preprocessing the X-ray image by CLAHE algorithm to highlight the internal details of the image. Finally, ResNext50 is selected as the feature extraction network. By using covid-chestxray dataset as the dataset, this paper evaluates the Accuracy, Precision, Recall rate and F1 value of the model. The effectiveness of this method is verified in experiments.
作者
柴文光
李嘉怡
CHAI Wenguang;LI Jiayi(School of Computers,Guangdong University of Technology,Guangzhou 510006,China)
出处
《计算机工程与应用》
CSCD
北大核心
2022年第8期237-242,共6页
Computer Engineering and Applications
基金
国家自然科学基金(62072118)。