摘要
BACKGROUND Microvascular tissue reconstruction is a well-established,commonly used technique for a wide variety of the tissue defects.However,flap failure is associated with an additional hospital stay,medical cost burden,and mental stress.Therefore,understanding of the risk factors associated with this event is of utmost importance.AIM To develop machine learning-based predictive models for flap failure to identify the potential factors and screen out high-risk patients.METHODS Using the data set of 946 consecutive patients,who underwent microvascular tissue reconstruction of free flap reconstruction for head and neck,breast,back,and extremity,we established three machine learning models including random forest classifier,support vector machine,and gradient boosting.Model performances were evaluated by the indicators such as area under the curve of receiver operating characteristic curve,accuracy,precision,recall,and F1 score.A multivariable regression analysis was performed for the most critical variables in the random forest model.RESULTS Post-surgery,the flap failure event occurred in 34 patients(3.6%).The machine learning models based on various preoperative and intraoperative variables were successfully developed.Among them,the random forest classifier reached the best performance in receiver operating characteristic curve,with an area under the curve score of 0.770 in the test set.The top 10 variables in the random forest were age,body mass index,ischemia time,smoking,diabetes,experience,prior chemotherapy,hypertension,insulin,and obesity.Interestingly,only age,body mass index, and ischemic time were statistically associated with the outcomes.CONCLUSIONMachine learning-based algorithms, especially the random forest classifier, were very important incategorizing patients at high risk of flap failure. The occurrence of flap failure was a multifactordrivenevent and was identified with numerous factors that warrant further investigation.Importantly, the successful application of machine learning models may help the clinician indecision-making, understanding the underlying pathologic mechanisms of the disease, andimproving the long-term outcome of patients.