摘要
对RLW方程提出一个高精度守恒紧致差分格式,所建格式满足离散质量守恒和能量守恒,在时间上为二阶精度,在空间上为四阶精度.用离散能量法证明了所建格式的收敛性和稳定性.数值实验验证了该格式的有效性和可靠性.
A high-order conservative compact difference scheme for solving regularized long wave(RLW) equation is proposed. The difference scheme is conservative for discrete mass and energy. The scheme is second-order accurate in time and fourth-order in space. The convergence and stability of the scheme are proved using the discrete energy method. The numerical experiment shows that the proposed scheme is conservative and accurate.
作者
钟瑞华
王晓峰
宋岩
邓雅清
ZHONG Ruihua;WANG Xiaofeng;SONG Yang;Deng Yaqing(School of Mathematics and Statistics,Minnan Normal University,363000,Zhangzhou,Fujian,PRC)
出处
《曲阜师范大学学报(自然科学版)》
CAS
2022年第2期40-46,共7页
Journal of Qufu Normal University(Natural Science)
基金
福建省中青年教师教育科研项目资助(JAT190368)
福建省自然科学基金(2020J01796)。
关键词
RLW方程
紧致差分格式
守恒性
收敛性
稳定性
RLW equation
compact difference scheme
conservation
convergence
stability