期刊文献+

基于位置感知的情感可控对话生成模型研究

Position-awared Conversation Generation Model with Emotion Contrlled
下载PDF
导出
摘要 基于序列到序列的对话生成在实现情感状态转移时大多采用外部情感词嵌入的方式,编码器很难捕获解码器的情感状态,解码器被强制嵌入的外部情感词干扰,造成生成回复情感词堆叠及缺乏情感信息上下文。为解决上述问题,该文提出基于位置感知的情感可控对话生成模型。在编码的过程中,当前输入词向量和位置向量共同参与编码,在不影响当前输入的情况下,上文信息利用分层的编码方式增加额外编码信息。在解码的过程中,利用遮蔽语言的性能,强制模型进行内容理解和学习,编码器和解码器的联合训练能够生成符合语法的情感回复。实验结果表明,位置感知的加入进一步刻画了数据的潜在结构信息,提高了情感可控对话生成的语言质量。 Sequence to sequence generation model mostly uses the way of adding external emotional words when the model transfers the emotional state,which is defected in generation responses with emotional word stacks and lack of emotional information context.To address this issue,this paper proposes an emotion controllable conversation generation model based on position awareness.In the encoding process,the current input word vector and position vector jointly participate in encoding.Without affecting the current input,the preceding context is encoded by an additional leyer.In the decoding process,the masked model is used to force the model to understand and learn the content.The joint training of the encoder and the decoder could generate a grammatical emotion response.The experimental results show that the position awareness further characterizes the potential structural information on the data and improves the model quality.
作者 杨瑞 马志强 王春喻 斯琴 YANG Rui;MA Zhiqiang;WANG Chunyu;SI Qin(College of Data Science and Application,Inner Mongolia University of Technology,Hohhot,Inner Mongolia 010080,China;Inner Mongolia Autonomous Region Engineering and Technology Research Center of Big Data Based Software Service,Hohhot,Inner Mongolia 010080,China)
出处 《中文信息学报》 CSCD 北大核心 2022年第3期101-108,共8页 Journal of Chinese Information Processing
基金 国家自然科学基金(61762070,61862048) 内蒙古自然科学基金(2019MS06004)。
关键词 对话生成 序列到序列模型 注意力机制 位置感知 conversation generation Seq2Seq model attention mechanism location awareness
  • 相关文献

参考文献1

二级参考文献10

  • 1林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 2Tsou Benjamin K Y, Kwong O Y, Wong W L. Sentiment and content analysis of Chinese news coverage [ J ]. International Journal of Computer Processing of Oriental Languages, 2005, 18(2) : 171-183.
  • 3Ekman P. Facial expression and emotion [ J]. Americam Psychologist, 1993, 48:384-392.
  • 4Yu Zhang, zhuoming Li, Fuji Ren, Shingo Kuroiwa. Semiautomatic emotion recognition from textual input based on the constructed emotion thesaurus[ C]. Proceedings of 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering (IEEE NLP-KE' 05). 2005 : 571-576.
  • 5许小颖,陶建华.汉语情感系统中情感划分的研究[C].第一届中国情感计算及智能交互学术会议论文集.2003:199-205.
  • 6Ekman P. An argument for basic emotions [ J]. Cognition and Emotion, 1992, 6: 169-200.
  • 7郑怀德,孟庆海.汉语形容词用法词典[M].北京:商务印书馆,2004.
  • 8Hugo Liu, Henry Lieberman, Ted Selker. A model of textual affect sensing using real-world knowledge [ C ] .Proceedings of the 8th International Conference on Intelligent User Interfaces. 2003: 125-132.
  • 9Hugo Liu, Ted Selker, Henry Lieberman. Visualizing the affective structure of a text document [ C ].Proceedings of Conference on Human Factors in Computing Systems. 2003 : 740-741.
  • 10Hua Wang, Helmut Prendinger, Takeo Igarashi. Communicating emotions in online chat using physiological sensors and animated text [ C ].Proceedings of Conference on Human Factors in Computing Systems. 2004: 1171- 1174.

共引文献393

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部