期刊文献+

基于疫情部分数据的数据可视化的实现

Implementation of data visualization: based on some epidemic data
下载PDF
导出
摘要 2020年新冠肺炎疫情在极短时间内蔓延至全球,社会对疫情数据及信息的需求十分迫切。此时,各级政府部门通过多种渠道及时发布了相关数据,如何利用数据分析手段为公众提供疫情数据的解读分析,配合政府的开展防疫措施迫在眉睫。文章利用Python对新冠疫情数据进行分析和处理,作者详细说明了数据可视化的流程以及相关操作,并对相关代码进行说明;利用TipdmBI数据可视化平台设计数字大屏,并展示新冠疫情的时空变化,绘制城市新冠疫情风险图;利用时间序列模型,对国内外疫情变化情况进行分析和预测。文章结尾描述了数据可视化在新闻设计、医学、气象工程、数据挖掘等方面的应用。 In January 2020, the new coronavirus epidemic spread in a very short period of time across the globe. Faced with the urgent need of the society for information on the epidemic, government departments at all levels released relevant first-hand data in a timely manner through various channels, it is of great significance to provide the public with the interpretation and analysis of epidemic data by means of various analysis methods and cooperate with the government to carry out epidemic prevention measures. In this paper, Python is used to analyze and process the data of the new crown epidemic situation, and the data visualization platform is used to design a digital large screen to show the spatial and temporal changes of the new crown epidemic situation, to draw the risk map of the city, to analyse new crown epidemic situation, and to use the time series model. The changes of epidemic situation at home and abroad were analyzed and predicted.
作者 李霖 张俊坤 陈尧 张宇 Li Lin;Zhang Junkun;Chen Yao;Zhang Yu(Panzhihua University,Panzhihua 617000,China)
机构地区 攀枝花学院
出处 《无线互联科技》 2022年第2期129-131,共3页 Wireless Internet Technology
关键词 数据分析与处理 Python可视化 新冠疫情 data analysis and processing Python visualization new crown epidemic
  • 相关文献

参考文献2

二级参考文献25

  • 1Aebi, D., Perrochon, L. Towards improving data quality. In: Sarda, N.L., ed. Proceedings of the International Conference on Information Systems and Management of Data. Delhi, 1993. 273~281.
  • 2Wang, R.Y., Kon, H.B., Madnick, S.E. Data quality requirements analysis and modeling. In: Proceedings of the 9th International Conference on Data Engineering. Vienna: IEEE Computer Society, 1993. 670~677.
  • 3Rahm, E., Do, H.H. Data cleaning: problems and current approaches. IEEE Data Engineering Bulletin, 2000,23(4):3~13.
  • 4Galhardas, H., Florescu, D., Shasha, D., et al. AJAX: an extensible data cleaning tool. In: Chen, W.D., Naughton, J.F., Bernstein, P.A., eds. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Texas: ACM, 2000. 590.
  • 5Hernandez, M.A., Stolfo, S.J. Real-World data is dirty: data cleansing and the merge/purge problem. Data Mining and Knowledge Discovery, 1998,2(1):9~37.
  • 6Lee, M.L., Ling, T.W., Lu, H.J., et al. Cleansing data for mining and warehousing. In: Bench-Capon, T., Soda, G., Tjoa, A.M., eds. Database and Expert Systems Applications. Florence: Springer, 1999. 751~760.
  • 7Monge, A.E. Matching algorithm within a duplicate detection system. IEEE Data Engineering Bulletin, 2000,23(4):14~20.
  • 8Monge, A.E., Elkan, C. The field matching problem: algorithms and applications. In: Simoudis, E., Han, J.W., Fayyad, U., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Oregon: AAAI Press, 1996. 267~270.
  • 9Savasere, A., Omiecinski, E., Navathe, S.B. An efficient algorithm for mining association rules in large databases. In: Dayal, U., Gray, P., Nishio, S., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 432~444.
  • 10Srikant, R., Agrawal, R. Mining Generalized Association Rules. In: Dayal, U., Gray, P., Nishio, S., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 407~419.

共引文献283

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部