期刊文献+

SaaS模式下免费试用质量与试用时长的组合策略研究 被引量:3

Research on Optimal Portfolio Strategy of Free Trial Quality and Trial Duration in SaaS Model
原文传递
导出
摘要 免费试用是软件即服务(SaaS)运营商获取用户的主要方式,也是一种成本高昂的营销手段。SaaS运营商的一个主要决策问题是在何种市场情境采用何种免费试用策略,以实现最大收益。本研究提出了SaaS用户体验模型,描述SaaS用户试用体验前后感知质量分布,构建SaaS服务的试用质量与试用时长组合优化模型。研究发现:针对市场“低估”SaaS服务质量且质量感知处于“高不确定”情境时,SaaS运营商应采用“高试用质量+低试用时长”的限时试用策略;当市场处于“低估+低不确定”情境时,运营商应采用“高试用质量+高试用时长”的混合试用策略,从而扭转市场对服务质量的过低估计;针对市场“高估”SaaS服务质量且质量感知处于“高不确定”情境下,运营商应采用“低试用质量+高试用时长”的功能限制型试用策略;当市场处于“高估+低不确定”情境时,运营商应采用“低试用质量+低试用时长”的混合试用策略。此外,本文还分析了SaaS运营商的技术学习率对四类市场情境下试用策略的影响。 Free trial is a primary and expensive method for SaaS cloud service operators to acquire users.Therefore,a key issue for decision-makers is to determine what trial strategies are most profitable in what market contexts for operators.In this study,the SaaS user experience model is proposed to describe the perceived quality distribution before and after the trial experience of SaaS users.The optimization model for the portfolio strategy of trial quality and trial duration is constructed for SaaS cloud service.The research finds that:When SaaS service market underestimates service quality and its perceived uncertainty is in a“high uncertainty”situation,SaaS operators should adopt the time-limited trial strategy of“high trial quality+low trial duration”;When the market is in the situation of“underestimation+low uncertainty”,operators should adopt the mixed trial strategy of“high trial quality+high trial duration”to reverse the market’s underestimation of service quality;When the market overestimates SaaS service quality and the quality perception is in the situation of“high uncertainty”,operators should adopt the functional-limited trial strategy of“low trial quality+high trial duration”;When the market is in the situation of“overestimation+low uncertainty”,operators should adopt the mixed trial strategy of“low trial quality+low trial duration”.This paper also analyzes the impact of SaaS operators’learning factor on trial strategies in four market contexts.
作者 彭慧洁 程岩 Peng Huijie;Cheng Yan(School of Business,East China University of Science and Technology,Shanghai 200237)
出处 《管理评论》 CSSCI 北大核心 2022年第1期142-154,共13页 Management Review
基金 国家自然科学基金面上项目(71271087)。
关键词 软件即服务 免费试用 用户体验模型 用户选择行为模型 组合策略 software-as-a-service free trial user experience model consumer choice behavior model portfolio strategy
  • 相关文献

参考文献6

二级参考文献116

  • 1魏明侠.感知隐私和感知安全对电子商务信用的影响研究[J].管理学报,2005,2(1):61-65. 被引量:16
  • 2魏明侠.电子商务中信用图章经济功能分析[J].科技管理研究,2005,25(6):78-80. 被引量:7
  • 3薛红志,张玉利.突破性创新、互补性资产与企业间合作的整合研究[J].中国工业经济,2006(8):101-108. 被引量:38
  • 4Kennedy J, Eberhert R. Particle swarm optimization[C]. IEEE Int Conf on Neural Networks. Perth, 1995: 1942- 1948.
  • 5Shi Y, Eberhert R. Empirical study of particle swarm optimization[C]. Int Conf on Evolutionary Computation. Washington: IEEE, 1999: 1945-1950.
  • 6Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multi-dimensional complex space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 7Carmelo J, Bastos-Filho A, Marcel P Caraciolo, et al. Multi-ring dispersed particle swarm optimization[C]. Eighth Int Conf on Hybrid Intelligent Systems. Barcelona, 2008: 25-30.
  • 8Leandro dos Santos Coelho. A quantum particle swarm optimizer with chaotic mutation operator[J]. Chaos, Solitons and Fractals, 2008, 37(5): 1409-1418.
  • 9Chen D B, Zhao C X. Particle swarm optimization with adaptive population size and its application[J]. Applied Soft Computing, 2009, 9(1): 39-48.
  • 10Jin Yisu, Joshua Knowles, Lu Hongmei, et al. The landscape adaptive particle swarm optimizer[J]. Applied Soft Computing, 2008, 8(1): 295-304.

共引文献114

同被引文献25

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部