期刊文献+

动态特征选择算法对恶意行为检测的优化研究 被引量:2

Optimization of dynamic feature selection algorithm for malicious behavior detection
下载PDF
导出
摘要 针对互联网中存在的恶意行为,特别是社交网络应用中的在线恶意行为,通常使用基于用户多维特征的聚类分析算法进行检测。提出一种动态特征选择算法(DFSA),使用具有特征加权熵的模糊C均值目标函数,首先为参数构建一个学习模式,自动计算每个特征权重,并剔除权重小于阈值的特征,动态选择重要的特征,迭代地更新隶属函数、簇中心和特征权重直到最优化为止,最后识别出具有高精度的恶意用户行为簇。仿真结果表明,对比SDAFS算法、ELAFC算法和NADMB算法,DFSA算法在Rand指数、Jaccard指数和归一化互信息量3个主要性能指标上均有改善。 For malicious behaviors existing in the Internet,especially online malicious user behavior detection in social network applications,clustering analysis algorithms based on multi-dimensional user characteristics are usually used for detection.This paper proposes a dynamic feature selection algorithm(DFSA),which uses a fuzzy C-means objective function with feature weighted entropy.Firstly,a learning mode is constructed for the parameters,and each feature weight is automatically calculated,and features whose weight is less than the threshold are eliminated.Important feature components are selected dynamically,and the membership function,cluster center and feature weights are updated iteratively until the optimization is achieved.Finally,malicious user behavior clusters with high accuracy is detect-ed.The simulation results show that the proposed algorithm outperforms the SDAFS algorithm,the ELAFC algorithm and the NADMB algorithm in terms of three main performance indicators such as Rand index,Jaccard index and normalized mutual information.
作者 刘云 肖添 王梓宇 LIU Yun;XIAO Tian;WANG Zi-yu(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处 《计算机工程与科学》 CSCD 北大核心 2022年第4期665-673,共9页 Computer Engineering & Science
基金 国家自然科学基金(61761025) 云南省重大科技专项计划(202002AD080002)。
关键词 特征选择 恶意用户行为 在线社交网络 模糊聚类 feature selection malicious user behavior online social network fuzzy clustering
  • 相关文献

参考文献3

二级参考文献33

  • 1中国互联网网络信息中心.第33次中国互联网发展状况调查统计报告[R/OL].(2014-03-05)【2014-07-01].http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201403/t20140305-46240.htm.
  • 2Yardi S, Romero D, Schoenebeck G. Detecting spam in a twitter network. First Monday, 2009, 15(1): 1-13.
  • 3Stringhini G, Kruegel C, Vigna G. Detectingspammers on social networks // Proceedings 26th Annual Computer Security Applications ference. New York: ACM, 2010:1-9 of the Con-.
  • 4Thomas K, Grier C, Song D, et al. Suspended accounts in retrospect: an analysis of twitter spare // Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement. New York: ACM, 2011 243-258.
  • 5Zhang X, Zhu S, Liang W. Detecting spam and promoting campaigns in the twitter social network // Proceedings of the 2012 IEEE 12th International Conference on Data Mining. Brussels: IEEE Com- puter Society, 2012:1194-1199.
  • 6Lee K, Eoff B D, Caverlee J. Seven months with the devils: a long-term study of content polluters on Twitter // AAAI Conference on Weblogs and Social Media (ICWSM). Barcelona, 2011 : 185-192.
  • 7Yang C, Harkreader R C, Gu G. Die free or live hard? empirical evaluation and new design for fighting evolving twitter spammers // Recent advances in intrusion detection. Berlin: Springer, 2011:318-337.
  • 8Shen Yang, Li Shuchen, Ye Xiaoxiao, et al. Content mining and network analysis of microblog spam. Journal of Convergence Information Technology, 2010, 5(1): 135-140.
  • 9Zhang C M, Paxson V. Detecting and analyzing automated activity on twitter // Passive and active measurement. Berlin: Springer, 2011 : 102-111.
  • 10Chu Z, Gianvecchio S, Wang H, et al. Detecting automation of twitter accounts: are you a human, bot, or cyborg?. IEEE Transactions on Dependable and Secure Computing, 2012, 9(6): 811-824.

共引文献35

同被引文献27

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部