期刊文献+

基于卷积神经网络的柴油机DPF状态辨识研究

Study on State Identification of Diesel Engine DPF Based on Convolutional Neural Network
下载PDF
导出
摘要 针对柴油机颗粒捕集器功能失效的问题,应用GT-SUITE软件对柴油机颗粒捕集器进行仿真分析,研究颗粒捕集器温度、压降和碳烟浓度等与其状态的关联关系,并采用一维卷积神经网络对颗粒捕集器状态特征“自学习”,提高颗粒捕集器状态辨识的准确度。 According to the failure problem of the diesel particulate filter function,the authors simulate and analyze the diesel engine DPF through GT-SUITE software and study the relationship between the DPF state with its temperature,pressure drop,and soot concentration.Then,they improve the accuracy of DPF state identification through applying the one-dimensional convolutional neural network self-learning the state features.
作者 程德新 赵树恩 张军 王欣伟 胡超超 CHENG Dexin;ZHAO Shu’en;ZHANG Jun;WANG Xinwei;HU Chaochao(School of Mechatronics and Vehicle Engineering,Chongqing Jiaotong University,Chongqing 400074,China;State Key Laboratory of Engine Reliability,Weifang 261000,China;Weichai Power Co.,Ltd.,Weifang 261000,China)
出处 《客车技术与研究》 2022年第2期36-40,共5页 Bus & Coach Technology and Research
基金 内燃机可靠性国家重点实验室开放基金项目(SKLER-201912)。
关键词 柴油机 颗粒捕集器 故障特征 状态辨识 diesel engine DPF fault characteristics state identification
  • 相关文献

参考文献4

二级参考文献21

  • 1张春润,邵玉平,孙海东,李新,资新运,何国本.壁流式过滤体的流动阻力分析及再生效率研究[J].车用发动机,2005(5):65-67. 被引量:7
  • 2丁克良,欧吉坤,赵春梅.正交最小二乘曲线拟合法[J].测绘科学,2007,32(3):18-19. 被引量:68
  • 3贺泓,翁端,资新运.柴油车尾气排放污染控制技术综述[J].环境科学,2007,28(6):1169-1177. 被引量:154
  • 4清华大学电子学教研组.数字电子技术基础[M].北京:高等教育出版社,2006.
  • 5Cheng S. Apparatus for Sensing Particulates in Gas Flow Stream: US 007334401 B2[ P]. United States, February 2008.
  • 6Rauchfuss M, Cooper S, Zayan N. Diesel Particulate Filter Moni- toring Using Acoustic Sensing: US 006964694 B2 [ P ]. United States, November 2005.
  • 7Cunningham P, Shah C, Meckl P. Correlating Dynamic Pressure Signal Features to Diesel Particulate Filter Load [ R ]. Technical Report 2007-01-0333, Society of Automotive Engineers, Warren- dale, PA,2007.
  • 8Surve Pranati R. Diesel Particulate Filter Diagnostics Using Corre- lation and Spectral Analysis[D]. Purdue e-Pubs:Purdue Universi- ty, 2008.
  • 9JOSHI A. Strategies for data-based diesel engine fault diagnostics[D]. West Lafayette:Purdue University,2007.
  • 10BUNTING B, MILLER P, STOIA B, et al. System for controlling particulate filter temperature: US006910329. B2[P]. 2005-06-28.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部