期刊文献+

代价约束下基于随机游走的负影响力传播抑制方法

Negative influence propagation suppression method based on a random walk under cost constraint
下载PDF
导出
摘要 在社交网络的信息传播机制中,不同用户之间信息扩散往往会受到用户之间影响力的影响,因此开展复杂网络分析研究显得格外必要。首先研究在代价约束下,社交网络的影响力传播模型,在未知网络传播原理的情况下,研究如何利用叠加的随机游走策略对网络的影响力传播进行度量,将影响力传播的范围控制在某一子图中,设计出抑制负影响力传播的有效方法。在此基础上,通过渗流来对抑制节点的范围进行控制。实验证明,本文的算法不仅可以有效地限制负影响力的传播,而且在代价约束下能够取得较好的性能。本文不仅对分析、理解和预测网络的拓扑结构、功能和动力学行为具有十分重要的理论意义,而且在舆情管控、虚假信息抑制等领域中也发挥着重要的作用。 The information diffusion mechanism of social networking among different users is often affected by the in-fluence among users,so it is particularly necessary to carry out a complex network analysis.In this paper,we first study the influence propagation model of complex networks with cost constraints.In the case of the unknown network propagation principle,we use a superposed random walk strategy to measure the influence propagation of networks,control the scope of influence propagation in a certain sub-graph,and design an effective method to suppress negative influence propagation.On this basis,the idea of percolation is introduced to determine the set size of restraining nodes.Experimental results show that this algorithm can effectively limit the propagation of negative influence and achieve better performance under cost constraints.This paper is of great theoretical significance to analyzing,understanding,and predicting social network’s topological structure,function,and dynamic behavior.It plays an important role in public opinion control and false information suppression.
作者 陈伯伦 朱国畅 纪敏 朱鸿飞 韦晨 CHEN Bolun;ZHU Guochang;JI Min;ZHU Hongfei;WEI Cheng(Institute of Computer and Software Engineering,Huaiyin Institute of Technology,Huai’an 223003,China)
出处 《智能系统学报》 CSCD 北大核心 2022年第2期266-275,共10页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61602202) 江苏省自然科学基金项目(BK20160428) 江苏省六大人才高峰项目(XYDXX-034) 江苏省高等学校自然科学研究项目(20KJA520008).
关键词 社交网络 代价约束 影响力传播 叠加随机游走 负影响力 传播抑制 渗流 子图 social network cost constraint information diffusion superposed random walk negative influence propagation inhibition percolation sub-graph
  • 相关文献

参考文献7

二级参考文献74

  • 1Domingos P, Richardson M. Mining the network value of customers//Proceedings of the 7th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001: 57-66.
  • 2Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing//Proeeedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002:61-70.
  • 3Kempe D, Kleinberg J, Tardos L. Maximizing the spread of influence through a social network//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC, USA, 2003: 137-146.
  • 4Leskovec J, Krause A, Guestrin C, et al. Cost-effective out- break detection in networks//Proeeedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007:420-429.
  • 5Chen Wei, Wang Ya-Jun, Yang Si-Yu. Efficient influence maximization in social networks//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 199-207.
  • 6Estavez Pablo A, Vera P, Saito K. Selecting the most influential nodes in social networks//Proceedings of the 2007 International Joint Conference on Neural Networks. Orlando, USA, 2007:2397-2402.
  • 7Chen Wei, Wang Chi, Wang Ya-Jun. Scalable influence maximization for prevalent viral marketing in large-scale social networks//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC, USA, 2010:1029-1038.
  • 8Chen Wei, Yuan Yi-Fei, Zhang Li. Scalable influence maxi- mization in social networks under the linear threshold model //Proceedings of the 10th IEEE International Conference on Data Mining. Sydney, Australia, 2010:88-97.
  • 9Chen Wei, Collins A, Cummings R, et al. Influence maximi- zation in social networks when negative opinions may emerge and propagate//Proceedings of the llth SIAM International Conference on Data Mining. Mesa, USA, 2011:379 -390.
  • 10Narayanam R, Narahari Y. A shapley value-based approach to discover influential nodes in social networks. IEEE Transactions on Automation Science and Engineering, 2010, 8(1): 130- 147.

共引文献235

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部