期刊文献+

基于部件关注DenseNet的细粒度车型识别 被引量:4

Fine-grained vehicle-type identification based on partially-focused DenseNet
下载PDF
导出
摘要 针对细粒度车型识别率低,车型区别主要集中在鉴别性部件上以及深度学习不能有效对部件进行关注的问题,提出一种基于部件关注DenseNet(part-focused DenseNet,PF-DenseNet)的细粒度车型识别模型。该模型可以基于细粒度车型的车灯、车标等区分性部件进行有效分类,通过处理层(process layer)对车型部件信息反复加强提取并进行最大池化下采样,获取更多的车型部件信息,然后通过密集卷积对特征通道进一步复用提取,密集卷积前嵌入独立组件(independent component,IC)层,获得相对独立的神经元,增强网络独立性,提高模型的收敛极限。实验结果表明,该模型在Stanford cars-196数据集上的识别准确率、查全率和F1分别达到95.0%、94.9%和94.8%,高于经典卷积神经网络,并具有较小的参数量,与其他方法相比实现了最高准确率,验证了该车型识别模型的有效性。 Given that fine-grained model recognition rates are low and are mainly concentrated in the diagnostic model difference between parts and that deep learning cannot effectively concern parts,we put forward a fine-grained recogni-tion model-the partially-focused DenseNet.The model can be classified effectively based on its discriminative parts,such as lights and marks of fine-grained vehicle models.First,through the Process Layer,the vehicle part information is repeatedly extracted,and the maximum pool sampling is carried out to obtain more vehicle part information.Then,fea-ture channels are further extracted by multiplexing through dense convolution,and the independent component layer is embedded before dense convolution to obtain relatively independent neurons.This enhances network independence and improves the convergence limit of the model.Experiments show that the model’s recognition accuracy,recall rate,and F1 on the Stanford cars-196 data set reach 95.0%,94.9%,and 94.8%,respectively,which are higher than the classic con-volutional neural network and have a smaller number of parameters.Compared with other methods,the highest accur-acy rate is achieved,verifying the effectiveness of the vehicle recognition model.
作者 陈立潮 朝昕 潘理虎 曹建芳 张睿 CHEN Lichao;CHAO Xin;PAN Lihu;CAO Jianfang;ZHANG Rui(School of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China;Department of Computer Science and Technology,Xinzhou Teachers University,Xinzhou 034000,China)
出处 《智能系统学报》 CSCD 北大核心 2022年第2期402-410,共9页 CAAI Transactions on Intelligent Systems
基金 山西省自然科学基金项目(201901D111258) 山西省应用基础研究项目(201801D221179).
关键词 细粒度车型识别 部件关注 密集连接网络 独立组件 数据增强 深度学习 特征提取 特征复用 fine-grained vehicle type identification part focus dense connection network independent component data enhancement deep learning feature extraction reuse of characteristics
  • 相关文献

参考文献6

二级参考文献17

共引文献116

同被引文献18

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部