期刊文献+

基于共现结构的频繁高效用项集挖掘算法 被引量:1

Frequent and High-Utility Itemset Mining Algorithms Using Estimated Utility Co-Occurrence Pruning
下载PDF
导出
摘要 频繁项集挖掘和高效用项集挖掘是数据挖掘研究中的重要内容.为克服在实际应用中单独使用这2类算法的局限性,频繁高效用项集挖掘算法开始被提出.基于经典高效用项集挖掘(Fast High-Utility Miner,FHM)算法,本文提出了频繁高效用项集挖掘(improved FHM with Support,iFHMS)算法.该算法构建了1个改进的共现结构(Utility and Support Co-occurrence Structure,USCS),存储满足效用约束条件和支持度约束条件的2-项集的事务加权效用和支持度.通过实验得出结论,iFHMS算法能够有效发现频繁高效用项集,且在时间效率方面有一定程度提升. Frequent itemset mining and high-utility itemset mining are two important branches in data mining research.In order to overcome the limitations of using these two kinds of algorithms alone in practical applications,frequent and high-utility itemset mining algorithm has been proposed.In this paper,we propose a frequent and high-utility itemset mining algorithm,named iFHMS(improved FHM with Support).The algorithm constructs an improved Co-occurrence Structure to store TWU and support of 2-itemsets which are not less than thresholds.It can be concluded from the result of experiments that iFHMS can effectively find frequent and high-utility itemsets,and improve the time efficiency to a certain extent.
作者 杨海军 张博岚 路永华 YANG Hai-jun;ZHANG Bo-lan;LU Yong-hua(School of Information and Engineering,Lanzhou University of Finance and Economics,Lanzhou 730020,China)
出处 《辽宁大学学报(自然科学版)》 CAS 2022年第1期22-29,共8页 Journal of Liaoning University:Natural Sciences Edition
基金 2018年度甘肃省创新基地和人才计划自然科学基金(18JR3RA216) 甘肃省电子商务技术与应用重点实验室开放基金课题(2018GS DZSW 63A14)。
关键词 数据挖掘 频繁高效用项集 共现结构 data mining frequent and high-utility itemset Co-occurrence Structure
  • 相关文献

参考文献2

二级参考文献23

  • 1潘云鹤,王金龙,徐从富.数据流频繁模式挖掘研究进展[J].自动化学报,2006,32(4):594-602. 被引量:34
  • 2Krishnamoorthy S. Pruning strategies for mining high utility itemsets. Expert Systems with Applications, 2015, 42(5): 2371-2381.
  • 3Lan G C, Hong T P, Tseng V S, Wang S L. Applying the maximum utility measure in high utility sequential pattern mining. Expert Systems with Applications, 2014, 41(11): 5071-5081.
  • 4Lin C W, Hong T P, Lan G C, Wong J W, Lin W Y. Efficient updating of discovered high-utility itemsets for transaction deletion in dynamic databases. Advanced Engineering Informatics, 2015, 29(1): 16-27.
  • 5Lin C W, Lan G C, Hong T P. Mining high utility itemsets for transaction deletion in a dynamic database. Intelligent Data Analysis , 2015, 19(1): 43-255.
  • 6Manike C, Om H. Sliding-window based method to discover high utility patterns from data streams. Computational Intelligence in Data Mining. India: Springer, 2015. 173-184.
  • 7Yun U, Ryang H, Ryu K H. High utility itemset mining with techniques for reducing overestimated utilities and pruning candidates. Expert Systems with Applications, 2014, 41(8): 3861-3878.
  • 8Zihayat M, An A J. Mining top-k high utility patterns over data streams. Information Sciences, 2014, 285: 138-161.
  • 9Fournier-Viger P, Wu C W, Zida S, Tseng V S. FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. Foundations of Intelligent Systems. Switzerland: Springer, 2014. 83-92.
  • 10Yao H, Hamilton H J, Butz G J. A foundational approach to mining itemset utilities from databases. In: Proceedings of the 4th SIAM International Conference on Data Mining (ICDM 2004). Lake Buena Vista, FL, United States: Springer, 2004. 482-486.

共引文献11

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部