期刊文献+

中国能源金三角NO_(2)时空格局及其驱动因子

Spatiotemporal patterns and driving forces of NO_(2) concentrations from different emission sources in the energy golden triangle of China
下载PDF
导出
摘要 利用臭氧监测仪(OMI)提供的大气污染监测数据,结合产业结构、汽车保有量、国家政策措施等,通过城乡NO_(2)浓度差异的排放源分析方法提取能源金三角(EGT)地区2005~2019年对流层NO_(2)垂直柱浓度时空变化特征并探讨影响区域大气NO_(2)浓度驱动因素.结果表明,EGT煤炭化工源NO_(2)浓度与第二产业产值增速的相关系数为0.71(P<0.05),说明本文方法所提取的长时序煤炭化工源NO_(2)浓度能有效地指示产业结构调整和政策措施变化.NO_(2)浓度从2005~2011年的90.56molc/m^(2)增加至2012~2015年的720.77molc/m^(2),再下降至2016~2019年的247.36molc/m^(2),反映EGT经济发展模式经历了从小规模、中污染的点模式逐步发展成大范围、重污染的粗放模式,再到大范围、低污染的精工模式.与京津冀、华中、长三角等地区相比,EGT交通和工业排放对城市源NO_(2)污染贡献的变化特征进一步反映城镇化水平的发展和产业结构的优化.与OMI相比,高分辨率对流层观测仪(TROPOMI)能在短时序上提供丰富的影像细节信息,且随着观测时长的增加,有望增强长时序大气NO_(2)污染的精准监测. In order to understand the air pollution caused by the utilization of EGT resources and development, the air monitoring data were derived from OMI(ozone monitoring instrument) sensor, combined with data of industrial structure, vehicle ownership,national policies and measures, etc. The spatial and temporal characteristics of tropospheric NO_(2)vertical column concentration in the EGT region from 2005 to 2019 were extracted by using the emission source analysis method of urban and rural NO_(2)concentration differences, and the driving factors affecting the regional atmospheric NO_(2)concentration were analyzed and discussed. Finally, comparing the spatial characteristics of TROPOMI(tropospheric monitoring instrument) with OMI NO_(2)products, the results show that The correlation coefficient between NO_(2)concentration of EGT coal chemical source and output value growth of the secondary industry was 0.71(P<0.05), indicating that the NO_(2)concentration of long-term urban source and coal chemical source extracted by this method can effectively reflect the adjustment of regional industrial structure and changes in national policies and measures. The NO_(2)concentration increased from 90.56molec/m^(2)in 2005~2011 to 720.77molec/m^(2)in 2012~2015, and then decreased to 247.36molec/m^(2)in 2016~2019. The spatial-temporal variations of NO_(2)illustrate that the economic development model in the EGT has gradually evolved from a small-scale and moderate-polluting scattered model to a large-scale, heavy-polluting extensive model, and then to a large-scale, light-polluting fine model. Compared with the Beijing-Tianjin-Hebei Urban Agglomeration, the Central of China, and the Yangtze River Delta region, the changing characteristics of the contribution of traffic and industrial emissions to urban source NO_(2)pollution in the EGT further reflect the development of urbanization and the optimization of industrial structure. In comparison with OMI, it can be found that TROPOMI provides rich and detailed image information in a short time series, and as the observation time increases, it can provide long time series and precise atmospheric NO_(2)pollution monitoring.
作者 沈永林 骆济豪 马雨阳 姚凌 胡楚丽 SHEN Yong-lin;LUO Ji-hao;Ma Yu-yang;YAO Ling;HU Chu-li(National Engineering Research Center of Geographic Information System,China University of Geosciences,Wuhan 430074,China;School of Geography and Information Engineering,China University of Geosciences,Wuhan 430074,China;State Key Laboratory of Resources and Environmental Information System,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China)
出处 《中国环境科学》 EI CAS CSCD 北大核心 2022年第4期1585-1593,共9页 China Environmental Science
基金 国家重点研发计划重点专项(2020YFB2103403) 资源与环境信息系统国家重点实验室开放基金 南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0301) 自然资源部地理国情监测重点实验室(2022NGCM05)。
关键词 臭氧监测仪(OMI) 能源金三角 对流层NO_(2)垂直柱浓度 产业结构 空间分布 ozone monitoring instrument(OMI) energy golden triangle tropospheric NO_(2)vertical column concentration industrial structure spatial distribution
  • 相关文献

参考文献11

二级参考文献187

共引文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部