摘要
The catalytic performance of light-derived CO_(2)reduction with H_(2)O is strongly dependent on the sepa-ration efficiency of photogenerated carriers.Herein,the direct Z-scheme catalysts(g-C_(3)N_(4)/3DOM-WO_(3))of graphitic carbon nitride(g-C_(3)N_(4))nanosheets decorated three-dimensional ordered macroporous WO_(3)(3DOM-WO_(3))were successfully fabricated by using the in-situ colloidal crystal template method.The slow light effect of 3DOM-WO_(3)photonic crystals expands the absorption of visible light and improves the uti-lization of light energy.The Z-scheme structure of g-C_(3)N_(4)/3DOM-WO_(3)catalysts is able to upgrade the separation efficiency of photogenerated electron-hole pairs.The g-C_(3)N_(4)/3DOM-WO_(3)photocatalyst,whose formation rate of CO product is 48.7μmol g^(−1)h^(−1),exhibits the excellent catalytic activity for CO_(2)reduc-tion.The transfer pathway of stimulated electrons over the g-C_(3)N_(4)/3DOM-WO_(3)photocatalyst is proposed and discussed.The present approach provides unique insights into the rational development of high-performance photochemical systems for efficient CO_(2)reduction into valuable carbon-containing chemicals and energy fuels.
基金
supported by the National Natural Science Foundation of China (No.21972166)
Beijing Natural Science Foundation (No.2202045)
National Key Research and Development Program of China (No.2019YFC1907600)。