期刊文献+

基于实体模糊识别的高校心理咨询对话系统

College Psychological Counseling Dialogue System Based on Entity Fuzzy Recognition
下载PDF
导出
摘要 为了提升对话系统的实体纠错能力和意图识别正确率,提出了一种基于实体模糊识别的高校心理咨询对话系统。通过实体的拼音、模糊拼音、音调和正确汉字数纠正用户输入中易错实体,并给出一种构建噪声数据的方法,以提高对话系统识别未知意图的能力。实验表明,所构建的系统在实体纠错、内存占用和响应速度上都较对比算法更优,且整体测评结果证明构建噪声数据方法的有效性。 In order to improve the entity error correction ability and the correct rate of intention recognition of the dialogue system,a college psychological counseling dialogue system based on entity fuzzy recognition is proposed.Correcting the error-prone entity in user input through the entity’s Pinyin,fuzzy Pinyin,tone and correct number of Chinese characters.And a method of constructing noise data is given to improve the ability of the dialogue system to identify unknown intent.Experiments show that the constructed system is better than the comparison algorithm in terms of entity error correction,memory occupation and speed of response,and the overall evaluation results prove the effectiveness of the method of constructing noise data.
作者 章亮 徐戈 陈芳 ZHANG Liang;XU Ge;CHEN Fang(Department of Laboratory and Equipment Management, Minjiang University, Fuzhou, Fujian 350108, China;College of Computer and Control Engineering, Minjiang University, Fuzhou, Fujian 350108, China;Student Affairs Department, Minjiang University, Fuzhou, Fujian 350108, China)
出处 《闽江学院学报》 2022年第2期33-42,共10页 Journal of Minjiang University
基金 福建省中青年教师教育科研项目(JAT200446) 中央引导地方项目“福建省心理健康人机交互技术研究中心”(2020L3024) 大数据分析系统国家工程实验室开放课题(CASNDST202006) 福建省科技厅引导性科技项目(2019H0026)。
关键词 对话系统 实体提取 模糊识别 心理咨询 dialogue system entity extraction fuzzy recognition psychological counseling
  • 相关文献

参考文献3

二级参考文献103

  • 1拜战胜,蓝岚,彭佳红,陈哲.对话系统中控制模型的比较研究[J].郑州大学学报(理学版),2006,38(4):112-116. 被引量:3
  • 2余伶俐,蔡自兴,陈明义.语音信号的情感特征分析与识别研究综述[J].电路与系统学报,2007,12(4):76-84. 被引量:27
  • 3董士海,王横.人机交互.北京:北京大学出版社,2003.
  • 4Dahland G E, Yu Dong, Deng u, Acero A. Context?dependent pre- trained deep neural networks for large?vocabulary speech recognition. IEEE Transactions on Audio, Speech & Language Processing, 2012, 200): 30-42.
  • 5Federico M, Bertoldi N, Cettolo M. Irstlm , An open source toolkit for handling large scale language models/ /Proceedings of the Annual Conference of the International Speech Communication Association (Interopeech), Brisbane, Australia, 2008: 1618-1621.
  • 6Mohri M, Pereira F, Riley M. Weighted finite-state trans?ducers in speech recognition. Computer Speech &. Language, 2002, 16(1): 69-88.
  • 7Senior A, Lei Xin. Fine context, low-rank, softplus deep neural networks for mobile speech recognition/ /Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal ProcessingCICASSP). Florence, Italy, 2014.
  • 8Zen Hei-Ga, Tokuda K, Black A W. Statistical parametric speech synthesis. Speech Communication, 2009, 51(11): 1039-1064.
  • 9WU Y J, Wang R H. Minimum generation error training for hmm-based speech synthesis/ /Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (lCASSP). Toulouse, France, 2006.
  • 10Yu K, Young S. Continuous FO modelling for HMM based statistical speech synthesis. IEEE Transactions on Audio, Speech and Language Processing, 2011,19(5): 1071-1079.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部