期刊文献+

GA-BP神经网络的点蚀坑应力集中系数预测 被引量:3

Prediction on Stress Concentration Factor of Corrosion Pit Based on GA-BP Neural Network
下载PDF
导出
摘要 应用人工神经网络具有高度非线性映射功能,对腐蚀点蚀坑的应力集中系数进行预测。将遗传算法GA(Genetic Algorithm)和反向传播BP(Back Propagation)神经网络相结合建立了预测应力集中系数的GA-BP神经网络模型。运用该模型分别对含半椭球蚀坑圆棒在单轴拉伸和弯曲载荷下的应力集中系数随深径比的变化进行预测,并与BP神经网络预测结果以及有限元计算所得结果相对比。结果表明,GA-BP算法的神经网络预测精度要高于BP网络的,与有限元计算结果吻合度更高(误差在1.5%以内),说明GA-BP神经网络可以用于预测应力集中系数。 The highly nonlinear mapping function of artificial neural network enables it to predict the stress concentration factor of corrosion pits.By combing GA(Genetic Algorithm)with BP(Back Propagation)neural network,a GA-BP neural network model was developed to calculate the stress concentration factors of pits with various ratios of depth and diameter on a round bar under axial tension and bending.The results show that GA-BP agrees well with the finite element results(the error is less than 1.5%)and gives a better prediction than BP,indicating that GA-BP model is able to prediction the stress concentration factor.
作者 荆炀 俞树荣 李淑欣 JING Yang;YU Shurong;LI Shuxin(School of Petrochemical Engineering,Lanzhou University of Technology,Lanzhou 730050,China;Gansu Province Special Equipment Inspection and Testing Institute,Lanzhou 730050,China)
出处 《热加工工艺》 北大核心 2022年第6期44-47,共4页 Hot Working Technology
基金 国家自然科学基金资助项目(51275228) 甘肃省市场监督管理局科技项目(SSCJG-TS-202101)。
关键词 应力集中系数 GA-BP神经网络 有限元 stress concentration factor GA-BP neural network finite element
  • 相关文献

参考文献7

二级参考文献45

  • 1李铁钧,安伟光.基于人工神经网络的腐蚀管道的可靠性分析[J].机械工程师,2005(6):106-107. 被引量:5
  • 2连利仙,刘颖,叶金文,高升吉,涂铭旌.基于人工神经网络的Nd-Fe-Co-Zr-B系永磁合金磁性的预测模型[J].金属学报,2005,41(5):529-533. 被引量:5
  • 3董志航,廖志忠.理论应力集中系数的有限元求法[J].航空兵器,2005,12(3):15-18. 被引量:38
  • 4帅健,张春娥,陈福来.腐蚀管道剩余强度评价方法的对比研究[J].天然气工业,2006,26(11):122-125. 被引量:88
  • 5Li S X, Zeng H L, Yu S R, et al. A method of probabilistic analysis for steel pipeline with correlated corrosion defects [J]. Corros. Sci.,20O9, 51(12): 3050-3056.
  • 6Ahammed M, Melchers R E. Probabilistic analysis of pipelines subjected to pitting corrosion leak [J]. Eng. Struct., 1995, 17(2): 74-80.
  • 7Sinha S K, Pandey M D. Probabilistic neural network for reliability assessment of oil and gas pipelines [J]. Computer-Aid. Civil Infrastruct. Eng., 2002, 17(5): 320- 329.
  • 8Silva R C C, Guerreiro J N C, Loula A F D. A study of pipe interacting corrosion defects using the FEM and neu- ral networks [J]. Adv. Eng. Software. 2007, 38(11-12): 868-875.
  • 9ASME-B31G. A supplement of ASME B31G code for pressure piping, 1995, Manual for determining the remaining strength of corroded pipelines [S]. New York: American Society for Mechanical Engineers, 1995.
  • 10丛爽.面向MATLAB工具箱的神经网络理论与应用(第3版)[M].合肥:中国科学技术大学出版社,2009.

共引文献33

同被引文献43

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部