期刊文献+

泡沫铜/低熔点合金复合相变材料凝固放热分析 被引量:1

Solidification heat release of copper foam/low-melting-point alloy composite phase change material
下载PDF
导出
摘要 为研究泡沫铜/低熔点合金(LMPA)复合相变材料在间歇放热工作环境下恢复至初始状态的能力及不同孔隙率泡沫铜的添加对其凝固放热过程的影响,通过数值模拟对比分析了47合金、正二十三烷与泡沫铜复合前后的凝固放热过程,并调节泡沫铜/47合金复合材料孔隙率计算模拟芯片温度在凝固放热过程中温度随时间变化曲线。结果表明:泡沫铜的添加对2类材料凝固过程均有促进作用,模拟芯片恢复至目标温度所需时间分别被缩短6.6%和47.7%。因体积潜热值的差距,泡沫铜/47合金凝固时需放出更多热量,恢复至目标温度的时间较长,是正二十三烷复合相变材料的1.52倍。随着孔隙率的增大,复合相变材料恢复至室温状态所用时长变化不大,考虑到孔隙率对相变热控过程中的影响,实际使用时应综合考虑。 In order to research the competence of the copper foam/low-melting-point alloy(LMPA)composite material to recover to the initial state in the intermittent exothermic working environment and the influence of the addition of copper foam with different porosity on the solidification exothermic process,this paper compares and analyzes the solidification exothermic process of 47 alloys and n-tricosane before and after compositing with copper foam through numerical simulation,and adjusts the porosity of the copper foam/47 alloy composite material to calculate the temperature change curve of the simulation chip temperature during the solidification exothermic process.The results show that the addition of copper foam can promote the solidification process of the two types of materials,and the time of the simulation chip to recover to the target temperature is shortened by 6.6%and 47.7%.Due to the difference in volume latent heat value,the copper foam/47 alloy needs to release more heat during solidification,and it takes longer to recover to the target temperature,which is 1.52 times that of the n-tricosane composite.With the increase of porosity,the time that is taken for the composite phase change material to return to room temperature does not change much.Considering the influence of porosity on the thermal control process of phase change,comprehensive consideration should be given to actual use.
作者 侯天睿 邢玉明 郑文远 郝兆龙 HOU Tianrui;XING Yuming;ZHENG Wenyuan;HAO Zhaolong(School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China;Aviation Electromechanical System Comprehensive Aviation Technology Key Laboratory,Nanjing 211106,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第3期438-446,共9页 Journal of Beijing University of Aeronautics and Astronautics
基金 航空科学基金(20172851018)。
关键词 低熔点合金(LMPA)复合材料 数值模拟 间歇性 凝固放热 孔隙率 low-melting-point alloy(LMPA)composite numerical simulation intermittent solidification heat release porosity
  • 相关文献

参考文献2

二级参考文献15

  • 1周业涛,关振群,顾元宪.求解相变传热问题的等效热容法[J].化工学报,2004,55(9):1428-1433. 被引量:22
  • 2汤文辉.液态金属的定容比热随温度变化的理论研究[J].高压物理学报,1997,11(1):32-38. 被引量:1
  • 3Atul Sharma,V.V. Tyagi,C.R. Chen,D. Buddhi.Review on thermal energy storage with phase change materials and applications[J].Renewable and Sustainable Energy Reviews.2007(2)
  • 4B. Giordanengo,N. Benazzi,J. Vinckel,J.G. Gasser,L. Roubi.Thermal conductivity of liquid metals and metallic alloys[J].Journal of Non-Crystalline Solids.1999
  • 5K. N. Khanna,G. Shanker.Thermodynamic Properties of Liquid Metals: One-Component Plasma (OCP) Model[J].Physics and Chemistry of Liquids.1985(1)
  • 6Pal, Debabrata,Joshi, Yogendra K.Thermal management of an avionics module using solid-liquid phase-change materials[].Journal of Thermoelectricity.1998
  • 7Yokoyama, Isao,Naito, Seiichi.Specific heats of liquid transition metals calculated from the temperature derivative of the one-component plasma structure factor[].Physica B Condensed Matter.1991
  • 8Wierschke, Kevin W.,Franke, M.E.,Watts, Roland,Ponnappan, Rengasamy.Heat dissipation with pitch-based carbon foams and phase-change materials[].Journal of Thermoelectricity.2006
  • 9Yendler B,Dang K,Forrest M.A reusable heat shield using phase change materials. AIAA 2006-781 . 2006
  • 10Grodzka P G.Thermal control of spacecraft by use of solidliquid phase-change materials. AIAA 70-12 . 2006

共引文献6

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部