期刊文献+

飞机前轮转弯系统潜在故障预警方法研究

Research on Potential Fault Early Warning Method of Nose Wheel Steering System of Aircraft
下载PDF
导出
摘要 在现有计划维修体系下,飞机前轮转弯系统的故障具有隐蔽性。通过挖掘航后快速存取记录器(QAR)数据,开展前轮转弯系统潜在故障预警方法研究。首先,在分析前轮转弯系统故障模式的基础上,筛选与前轮转弯系统故障相关的QAR监测参数并进行相应的处理;其次,基于前轮转弯系统的正常和故障案例,结合前轮转弯的操作原理,采用皮尔逊(Pearson)相关性系数分析方法,确定指令值和实际值之间存在相关性低的潜在故障特征,实现对潜在故障的预警;最后,利用前轮转弯实际案例进行验证。结果表明:基于QAR数据的前轮转弯潜在故障预警方法是有效的,可以为前轮转弯系统视情维修策略的制定提供参考。 As the fault of Nose Wheel Steering(NWS)system is of concealment under the existing planned maintenance system,the potential fault early warning method of NWS is studied by mining the post flight Quick Access Recorder(QAR)data.Firstly,on the basis of analyzing the failure mode of NWS,the monitoring QAR parameters relating to the NWS failure are selected and handled.Secondly,based on the normal and faulty cases of NWS,combined with the operational principle of NWS,the Pearson correlation coefficient analysis method is used to determine the potential failure characteristics of the low correlation between the command value and actual value,so as to realize the detection of potential failure.Finally,the actual case of NWS is used to verify the effectiveness of the potential fault warning method based on QAR data,which provides a reference for the formulation of condition based on maintenance strategy of NWS.
作者 黄世杰 蔡景 何盛 HUANG Shijie;CAI Jing;HE Sheng(College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Aircraft Maintenance Department,China Eastern Airlines Jiangsu Ltd.,Nanjing 211113,China)
出处 《航空工程进展》 CSCD 2022年第2期78-84,106,共8页 Advances in Aeronautical Science and Engineering
关键词 前轮转弯 快速存取记录器 故障预警 Pearson相关性系数 潜在故障 nose wheel steering QAR fault early warning Pearson correlation coefficient potential fault
  • 相关文献

参考文献8

二级参考文献30

  • 1费胜巍,孙宇,师会超.基于故障分析模型的贝叶斯网络构建及应用[J].计算机集成制造系统,2007,13(9):1768-1773. 被引量:9
  • 2Nandi S, Toliyat H A, Li X. Condition monitoring and fault diagnosis of electrical motors-a review [J].IEEE Transactions on Energy Conversion, 2005, 20 (4) : 719- 729.
  • 3Stephenson T A. An introduction to Bayesian network the ory and usage[P], IDIAP-RR 00-03, 2000.
  • 4Niedermayer D. Innovations in Bayesian networks [M]. Berlin: Springer Berlin Heidelberg, 2008: 117-130.
  • 5Romessis C, Mathioudakis K. Bayesian network approach for gas path fault diagnosisEJ~. Journal of Engineering for Gas Turbines and Power, 2006, 128(1): 64-72.
  • 6Yongli Z, Limin H, Jinling L. Bayesian networks-based ap- proach for power systems fault diagnosis[J~. IEEE Trans- actions on Power Delivery, 2006, 21(2) : 634-639.
  • 7Srinivas S, Russell S, Agogino A M. Automated construc- tion of sparse Bayesian networks from unstructured proba bilistic models and domain information[EB/OL]. [2016-04- 26]http://www arxlv, org.
  • 8Henrion M. Practical issues in constructing a Bayes' belief network[EB/OL]. [2016- 04 -26[http://www. arxiv, org.
  • 9Darwiche A. Bayesian networksEJ~. Communications of the ACM, 2010, 53(12)= 80-90.
  • 10Przytula K W, Milford R. An efficient framework for the conversion of fault trees to diagnostic Bayesian network models[C]//Aerospace Conference, Big Sky: MT, 2006.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部