摘要
[目的]由于船体结构的复杂性,传统优化方法容易出现陷入局部最优、求解速度偏慢的问题。[方法]基于自适应变异粒子群算法(AMPSO)、BP神经网络、遗传算法(GA),结合Isight/Nastran设计的正交试验方法,提出AMPSO-BP-GA结构优化方法,然后分别以十杆桁架和跳板结构的优化作为算例,验证所提优化算法的准确性和可行性。[结果]计算结果表明:在相同的约束条件下,经AMPSO-BP-GA方法优化后,十杆桁架结构重量为2272.1 kg,比其他方法优化后的结构重量更轻;跳板重量减少了33.3%,对比GA-BP-GA方法和PSOBP-GA方法分别减少25.4%和17.9%,显示AMPSO-BP-GA方法的优化效果更佳。[结论]AMPSO-BP-GA方法针对结构轻量化的优化效果更佳,可为船舶结构优化设计提供参考。
[Objectives]Due to the complexity of hull structures,traditional optimization methods are prone to fall into the local optimum and have slow solution speeds.[Methods]For this reason,based on an adaptive mutation particle swarm optimization(AMPSO)algorithm,BP neural network and genetic algorithm(GA),combined with orthogonal experiments designed by Isight/Nastran,an AMPSO-BP-GA structural optimization method is proposed.Subsequently,the optimizations of cross-bar truss and gangboard structures are used as examples to verify the accuracy and feasibility of the algorithm.[Results]The calculation results show that under the same constraints,the weight of a cross-bar truss structure optimized by the AMPSO-BP-GA method is 2272.1 kg,which is lighter than structures optimized by other methods;and using the AMPSO-BPGA method,the weight of a gangboard is reduced by 33.3%compared with the 25.4%weight reduction of the GA-BP-GA method and 17.9%weight reduction of the PSO-BP-GA method,demonstrating that the AMPSOBP-GA method has superior optimization results.[Conclusions]Compared with the three methods of BPGA,PSO-BP-GA and GA-BP-GA,the AMPSO-BP-GA method has a better effect in the optimization of lightweight structure,and can provide references for the optimization design of hull structures.
作者
王一镜
罗广恩
王陈阳
李爽
WANG Yijing;LUO Guang'en;WANG Chenyang;LI Shuang(School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China)
出处
《中国舰船研究》
CSCD
北大核心
2022年第2期156-164,共9页
Chinese Journal of Ship Research
基金
江苏省自然科学基金资助项目(BK20150468)
工信部高技术船舶科研资助项目。
关键词
结构优化
BP神经网络
自适应变异粒子群算法
遗传算法
车渡船跳板
structural optimization
BP neural network
adaptive mutation particle swarm optimization(AMPSO)
genetic algorithm(GA)
gangboard of car ferry