期刊文献+

红细胞在网状微血管结构内的运动仿真研究

Simulation of Erythrocyte Movements in Reticular Microvascular Structure
下载PDF
导出
摘要 目的本文运用流体力学软件COMSOL Multiphysics建立微血管模型仿真,模拟微血管中红细胞的运动轨迹,计算得出红细胞的速度和位移与时间之间的关系。方法根据微血管系统的网状结构,利用流体力学计算软件COMSOL Multiphysics建立有限元模型,并对粒子轨迹进行处理,得到稳定的数据分析结果。结果随着流速的增大,红细胞运动更加剧烈,速度更快。当流速从100 mL/h逐渐增加至400 mL/h时,粒子在1 s内的平均位移从0.22 cm增大到0.84 cm,并且二者的关系不完全是线性的。结论红细胞在网状微血管结构内的运动仿真为深入了解组织微循环的机制提供了有价值的信息。 Objective To establish the microvessel model simulation,simulate the movement trajectory of erythrocyte in microvessels,and calculate the relationship between the speed and displacement of erythrocyte and time using the fluid dynamics software COMSOL Multiphysics.Methods According to the reticular structure of the microvascular system,the finite element model was established with COMSOL Multiphysics,and the particle trajectory was processed to obtain stable data analysis results.Results With the increase of flow rate,erythrocyte moved more vigorously and faster.When the flow rate increased from 100 mL/h to 400 mL/h,the average displacement of particles increased from 0.22 cm to 0.84 cm within 1 s,and the relationship between them was not completely linear.Conclusion The simulation of erythrocyte movement in reticular microvascular structure provides valuable information for understanding the mechanism of tissue microcirculation.
作者 王振华 朱燕文 张权 邸文奇 尚禹 WANG Zhenhua;ZHU Yanwen;ZHANG Quan;DI Wenqi;SHANG Yu(School of Information and Communication Engineering,North University of China,Taiyuan Shanxi 030051,China)
出处 《中国医疗设备》 2022年第4期31-34,共4页 China Medical Devices
基金 山西省重点研发计划(201903D121149) 山西省自然科学基金(201901D111153) 山西省研究生教育创新项目(2021Y608)。
关键词 微循环 微血管 多物理场仿真 红细胞运动 血流动力学 microcirculation microvascular multi-physical field simulation erythrocyte movement hemodynamics
  • 相关文献

参考文献6

二级参考文献29

  • 1吴太虎,徐可欣,刘庆珍,陈锋.近红外光谱法无创测量人体血红蛋白浓度[J].激光生物学报,2006,15(2):204-208. 被引量:11
  • 2傅初黎,李洪芳,熊向团.不适定问题的迭代Tikhonov正则化方法[J].计算数学,2006,28(3):237-246. 被引量:33
  • 3邓伟,唐其柱,周纪宁,杨剑雪,王芳,梁锦军,黄觊.老年血管迷走性晕厥患者直立倾斜试验的血流动力学研究[J].实用医学杂志,2007,23(15):2337-2339. 被引量:2
  • 4Popel AS, Johnson PC. Microcirculation and hemorheology [ J ]. Annu Rev Fluid Mech,2005, 37:43 -69.
  • 5De Backer D, Orbegozo Cortes D, Donadello K,et al. Pathophys- iology of microcirculatory dysfunction and the pathogenesis of sep- tic shack [J]. Virulence, 2014, 5(1 ): 73-79.
  • 6Sabri M, Ai J, Lakovic K, et al. Mechanisms of microthrombasis and microcirculatory constriction after experimental subarachnoid hemorrhage//Zuccarello M, Clark JF, Pyne-Geithman G, et al. Cerebral Vasospasm: Neurovascular Events After Subarachnoid Hemorrhage[ M]. Vienna: Springer, 2013 : 185 - 192.
  • 7Goertz O, Baerreiter S, Ring A, et al. Determination of micro- circulatory changes and angiogenesis in a model of frostbite injury in viva[J]. J Surg Res,2011, 168(1) :155 -161.
  • 8Lima R, Ishikawa T, lmai Y, et al. Radial dispersion of red blood cells in blood flowing through glass capillaries:the role of hematocrit and geometry[J]. J Biomech, 2008, 41 (10) : 2188 - 2196.
  • 9Carugo D, Capretto L, Willis S, et al. A microfluidic device for the characterisation of embolisation with polyvinyl alcohol beads through biomimetic bifurcations [J]. Biomed Microdevices, 2012, 14(1) :153 -163.
  • 10Shevkoplyas SS, Yoshida ?, Munn LL, et al. Biomimetic autoseparation of leukocytes from whole blood in a micmfluidic device[J]. Anal Chem,2005, 77(3) : 933 -937.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部