期刊文献+

一种面向轨道交通列车司机人脸检测方法

A Face Detection Method for Rail Transit Train Drivers
下载PDF
导出
摘要 针对轨道交通列车高速行驶过程中,轨道交通列车司机因长时间工作而产生的疲劳,将影响行车安全,对机车司机作业行为以及工作条件、工作状态和监督环节重要一部分。在列车司机长时间驾驶疲劳检测其中最关键技术之一是人脸检测和人脸感兴趣区域(ROI)定位,利用高斯肤色模型对列车司机驾驶图像中的人脸感兴趣区域(ROI)进行预分割,得到列车司机的人脸感兴趣区域,提出一种面向轨道交通列车司机疲劳检测关键技术之一是人脸检测的方法,针对轨道交通列车司机疲劳检测,如人脸检测技术进行了研究,经过实验分析表明,在复杂光照下列车司机人脸方法能有效提高人脸检测率,鲁棒性较好,为后续研究精准定位列车司机的眼睛张开和闭合进行疲劳检测奠定一定基础。 In the process of high-speed running of rail transit trains,the fatigue of rail transit train drivers due to long-time work will affect the driving safety,which is an important part of locomotive drivers’operation behavior,working conditions,work⁃ing status and supervision links.In the detection of train driver’s long-term driving fatigue,one of the most key technologies is face detection and face region of interest(ROI)location.The Gaussian skin color model is used to pre segment the face region of inter⁃est(ROI)in the train driver’s driving image to obtain the train driver’s face region of interest,One of the key technologies for rail transit train driver fatigue detection is face detection.The rail transit train driver fatigue detection,such as face detection technol⁃ogy,is studied.The experimental analysis shows that the train driver face method can effectively improve the face detection rate un⁃der complex illumination and has good robustness,It lays a certain foundation for the follow-up research to accurately locate the opening and closing of train driver’s eyes for fatigue detection.
作者 江跃龙 Jiang Yuelong(Guangzhou Railway Vocational and Technical College,Guangzhou 510610)
出处 《现代计算机》 2022年第3期1-6,30,共7页 Modern Computer
基金 2019年广东省普通高校青年创新人才类项目:基于增强PERCLOS深度学习轨道交通列车司机疲劳检测方法的研究(2019GKQNCX100) 2021年市基础研究计划基础与应用基础研究项目(202102080153)。
关键词 人脸检测 疲劳检测 色彩空间 肤色分割 face detection fatigue detection color space skin color segmentation
  • 相关文献

参考文献1

二级参考文献12

  • 1LIEVIN M, LUTHON F. Nonlinear color space and spati- otemporal MRF for hierarchical segmentation of face fea- tures in vide()[ J 1- IEEE Trans. Image Processing, 2004,13(1) : 63-71.
  • 2HSU R L, ABDEL-MOTI'ALEB M, JAIN A K. Face de- tection in color images[ J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24 (5) : 696-706.
  • 3LIU CH J, YANG J. ICA color space for pattern recogni- tion[ J ]. IEEE Trans. Neural Networks, 2009,20 (2) : 248-257.
  • 4CHOI J Y, ROY M, PLATANIOTIS K N. Boosting color feature selection for color face recognition [ J ]. IEEE Trans. Image Processing, 2011,20 ( 5 ) : 1425-1434.
  • 5PHUNG S L, BOUZERDOUM A, CHAI D. Skin seg- mentation using color pixel classification: Analysis and comparison[J]. IEEE Trans. Pattern Analysis and Ma- chine Intelligence, 2005,27( 1 ) :148-154.
  • 6YANG J, LU W, WAIBEL A. Skin-color modeling and adaptation [ C ]. Lecture Notes in Computer Science, 1997,1352 : 687-694.
  • 7PHILLIPS P J, MOON H, RIZVI S A, et al. The FERET evaluation methodology for face recognition algorithms [J]. IEEE Trans. Pattern Analysis and Machine Intelli- zence, 2000. 22 : 1090-1104.
  • 8HUANG G B, RAMESH M, BERG T, et al. Labeled faces in the wild: A database for studying face recogni- tion in unconstrained environments [ R ]. Amherst : Uni- versity of Massachusetts, 2007: 7-49.
  • 9CHAI D, NGAN K N. Face segmentation using skin-col- or map in videophone applications[ J ]. IEEE Trans. Cir- cuits And Systems For Video Technology, 1999,9 (4) : 551-564.
  • 10张争珍,石跃祥.YCgCr颜色空间的肤色聚类人脸检测法[J].计算机工程与应用,2009,45(22):163-165. 被引量:35

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部