摘要
现有的图像篡改检测算法在面对未知篡改时,模型的鲁棒性较差,并且篡改区域定位精度较低,小尺度篡改区域检测效果较差,导致模型漏报率较高。针对上述问题,提出了基于改进DeepLabV3+的图像篡改检测模型。模型利用可学习的特征提取器从篡改图像中学习统一的篡改特征;引入注意力模块,强化对篡改特征学习能力,使用ASPP模块提取多尺度特征提高小尺度篡改区域检测率;利用空洞卷积和特征融合模块提高篡改区域定位精度。实验结果表明,提出的方法优于现有的主流方法。
In the face of unknown tampering,the existing image tampering detection algorithm has poor robustness,and the accuracy of tampering area positioning is low,the detection effect of small-scale tampering area is poor,leading to a high failure rate of the model.To solve the above problems,an image tampering detection model based on improved DeepLabV3+is proposed.The model uses a learnable feature extractor to learn unified tamper features from tampered images;introduces an attention module to strengthen the ability to learn tamper features,uses the ASPP module to extract multi-scale features to improve the detection rate of small-scale tampered regions;uses atrous convolution and feature fusion module improve the accuracy of tampering area posi⁃tioning.The experimental results show that the proposed method is better than the existing mainstream methods.
作者
刘旭
Liu Xu(School of Cyber Science and Engineering,Sichuan University,Chengdu 610207)
出处
《现代计算机》
2022年第3期70-75,共6页
Modern Computer