期刊文献+

基于随机近邻嵌入的判别性特征学习

Discriminant Feature Learning Based on Stochastic Neighbor Embedding
下载PDF
导出
摘要 特征学习是机器学习中的一项重要技术,研究从原始数据中学习后置任务所需的数据表示.目前,多数特征学习算法侧重于学习原始数据中的拓扑结构,忽略了数据中的判别信息.基于此,提出了基于随机近邻嵌入的判别性特征学习模型.该模型将对判别信息的学习与对拓扑结构的学习融合在一起,通过迭代求解的方式,同时完成对这两者的学习,从而得到原始数据具有判别性的特征表示,可以显著提升机器学习算法的性能.多个公开数据集上的实验结果验证了该模型的有效性. Feature learning is an important technique in machine learning,which studies data representation learning required by the post task from raw data.At present,most feature learning algorithms focus on learning topological structure of the original data,but ignore the discriminant information in the data.This study proposes a novel model called discriminant feature learning based on t-distribution stochastic neighbor embedding(DTSNE).In this model,the learning of discriminant information and the learning of topology structure are fused together,so both of them are learned to obtain the discriminant feature representation of the original data through iterative solution,which can significantly improve the performance of the machine learning algorithm.Experimental results on multiple open data sets demonstrate the effectiveness of the proposed model.
作者 赵辉 王红军 彭博 龙治国 李天瑞 ZHAO Hui;WANG Hong-Jun;PENG Bo;LONG Zhi-Guo;LI Tian-Rui(School of Computing and Artificial Intelligence,Southwest Jiaotong University,Chengdu 611756,China;National Engineering Laboratory of Integrated Transportation Big Data Application Technology,Chengdu 611756,China)
出处 《软件学报》 EI CSCD 北大核心 2022年第4期1326-1337,共12页 Journal of Software
基金 国家自然科学基金(61806170,61773324) 国家重点研发计划(2017YFB1401401)。
关键词 特征学习 随机近邻嵌入 判别性学习 feature learning stochastic neighbor embedding discriminant learning
  • 相关文献

参考文献3

二级参考文献27

  • 1王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:95
  • 2Yan R, Zhang J, Yang J, et al. A discriminative learning frame work with pairwise constraints for video object classification[C]// Proceedings of the IEEE computer society conference on com- puter vision and pattern recognition. Washinton, USA, 2004,2: 284-291.
  • 3Tang W, Zhong S. Pairwise constraints-guided dimensionality reduction[C]//Proceedings of the Workshop on Feature Selec- tion for DataMining (SDM 2006). Bethesda, USA, 2006:295 311.
  • 4Bar-Hillel A, Hertz T, Shental N, et al. Learning a mahalanobis metric from equivalence constraints [J]. Journal of Machine Learning Research, 2006,6 (6) : 937-965.
  • 5Zhang D, Zhou Z, Chen S. Semi-Supervised dimensionality reduc- tion[C]// Proceedings of the SDM 2007. Minneapolis, USA, 2007: 629-634.
  • 6Cevikalp H, Verbeek J,Jurie F, et al. Semi-Supervised dimen- sionality reduction using pairwise equivalence constraints[C]// Proceedings of the VISAPP 2008. Funchal, 2008 489-496.
  • 7Wei J, Peng H. Neighbourhood preserving based semi-supervised dimensionality reduction[J]. Electronics Letters, 2008,44 (20) :1190-1191.
  • 8Baghshah M S, Shouraki S B. Semi-Supervised metric learning u sing pairwise constraints[C] // Proceedings of the IJCAI 2009. SanFrancisco, USA, 2009 : 1217-1222.
  • 9Qiao L, Chen S, Tan X. Sparsity preserving projections with ap- plications to face recognition[J]. Pattern Recognition, 2010,43 (1):331-341.
  • 10Wright J, Yang A, Sastry S, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analy- sis and Machine Intelligence, 2009,31 (2) : 210-227.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部