期刊文献+

类脑超大规模深度神经网络系统 被引量:4

Brain-inspired Large-scale Deep Neural Network System
下载PDF
导出
摘要 大规模神经网络展现出强大的端到端表示能力和非线性函数的无限逼近能力,在多个领域表现出优异的性能,成为一个重要的发展方向.如自然语言处理(NLP)模型GPT,经过几年的发展,目前拥有1750亿网络参数,在多个NLP基准上到达最先进性能.然而,按照现有的神经网络组织方式,目前的大规模神经网络难以到达人脑生物神经网络连接的规模.同时,现有的大规模神经网络在多通道协同处理、知识存储和迁移、持续学习方面表现不佳.提出构建一种启发于人脑功能机制的大规模神经网络模型,该模型以脑区划分和脑区功能机制为启发,集成大量现有数据和预训练模型,借鉴脑功能分区来模块化构建大规模神经网络模型,并由脑功能机制提出相应的学习算法,根据场景输入和目标,自动构建神经网络通路,设计神经网络模型来获得输出.该神经网络模型关注输入到输出空间的关系构建,通过不断学习,提升模型的关系映射能力,目标在于让该模型具备多通道协同处理能力,实现知识存储和持续学习,向通用人工智能迈进.整个模型和所有数据、类脑功能区使用数据库系统进行管理,该系统了还集成了分布式神经网络训练算法,为实现超大规模神经网络的高效训练提供支撑.提出了一种迈向通用人工智能的思路,并在多个不同模态任务验证该模型的可行性. Large-scale deep neural networks(DNNs)exhibit powerful end-to-end representation and infinite approximation of nonlinear functions,showing excellent performance in several fields and becoming an important development direction.For example,the natural language processing model GPT,after years of development,now has 175 billion network parameters and achieves state-of-the-art performance on several NLP benchmarks.However,according to the existing deep neural network organization,the current large-scale network is difficult to reach the scale of human brain biological neural network connection.At the same time,the existing large-scale DNNs do not perform well in multi-channel collaborative processing,knowledge storage,and reasoning.This study proposes a brain-inspired large-scale DNN model,which is inspired by the division and the functional mechanism of brain regions and built modularly by the functional of the brain,integrates a large amount of existing data and pre-trained models,and proposes the corresponding learning algorithm by the functional mechanism of the brain.The DNN model implements a pathway to automatically build a DNN as an output using the scene as an input.Simultaneously,it should not only learn the correlation between input and output but also needs to have the multi-channel collaborative processing capability to improve the correlation quality,thereby realizing knowledge storage and reasoning ability,which could be treated as a way toward general artificial intelligence.The whole model and all data sets and brain-inspired functional areas are managed by a database system which is equipped with the distributed training algorithms to support the efficient training of the large-scale DNN on computing clusters.This study also proposes a novel idea to implement general artificial intelligence,and the large-scale model is validated on several different modal tasks.
作者 吕建成 叶庆 田煜鑫 韩军伟 吴枫 Lü Jian-Cheng;YE Qing;TIAN Yu-Xin;HAN Jun-Wei;WU Feng(College of Computer Science,Sichuan University,Chengdu 610065,China;School of Automation,Northwestern Polytechnical University,Xi’an 710129,China;Department of Electronic Engineering and Information Science,University of Science and Technology of China,Hefei 230022,China)
出处 《软件学报》 EI CSCD 北大核心 2022年第4期1412-1429,共18页 Journal of Software
基金 国家重点研发计划(2017YFB1002201) 国家杰出青年科学基金(61625204) 国家自然科学基金(61836006)。
关键词 大规模深度神经网络 脑科学 多模态 通用人工智能 分布式计算 large-scale deep neural networks brain science multi-modal general artificial intelligence distributed computing
  • 相关文献

参考文献2

二级参考文献62

  • 1杨国为,涂序彦.广义人工脑感知联想记忆模型及其实现算法[J].中国医学影像技术,2003,19(z1):70-71. 被引量:2
  • 2刘玉田,梁军,杜正春,夏道止.神经网络用于实际电力系统切机控制决策[J].电力系统及其自动化学报,1996,8(1):18-23. 被引量:2
  • 3Hornik K,Stinchcombe M,White H.Universal approximation of an unknown mapping and its derivatives using multilayer feed forword networks.Neural Network,1990,(3):551-566
  • 4[J].Ghosh-Dastidar S, Adeli H. Spiking neural networks. International Journal of Neural Systems, 2009, 19(04):295-308.
  • 5Chrol-Cannon J, Jin Y C. Computational modeling of neural plasticity for self-organization of neural networks. BioSystems, 2014, 125:43-54.
  • 6Dayan P, Abbott L F. Theoretical neuroscience:computational and mathematical modeling of neural systems. cambridge:The MIT Press, 2001.
  • 7Seung S. Connectome:How the brain's wiring makes us who we are. New York:Houghton Mifflin Harcourt, 2012.
  • 8Jiang X L, Shen S, Cadwell C R, et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science, 2015, 350(6264):9462.
  • 9Lee W C, Bonin V, Reed M, et al. Anatomy and function of an excitatory network in the visual cortex. Nature, 2016, 532(7599):370-374.
  • 10Fukushima K. Neocognitron:A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 1980, 36(4):193-202.

共引文献44

同被引文献27

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部