期刊文献+

一种快速求解程函方程的间断伽辽金方法

A discontinuous Galerkin method to solve eikonal equation fast
下载PDF
导出
摘要 作为一种在勘探地震学里近期发展起来的有限元类数值求解程函方程的算法,间断伽辽金方法通过拓展基函数空间提高数值精度,但存在计算效率低的问题。为了解决该问题,提出一种并行快速扫描间断伽辽金方法。算法在快速扫描过程中对节点的计算顺序进行Cuthill-McKee变换,将能够并行计算的节点分为不同任务集合,进而实现不同任务集的并行计算。数值结果的分析表明:并行快速扫描间断伽辽金方法在保证计算精度的前提下,能稳定地提升计算效率,并且还能适应各种复杂速度模型。 As a recently developed finite element numerical algorithm for solving eikonal equations in exploration seismology,discontinuous Galerkin method can be used to improve numerical accuracy by extending basis function space,but there exists a problem of low computational efficiency.To solve this problem,for discontinuous Galerkin method obtained by combining fast sweeping method,Cuthill-McKee transformation of calculating order is performed in fast sweeping process and nodes which can be calculated at the same time are divided into different task sets,so as to realize the parallel calculation of task sets.The numerical analysis and examples show that the algorithm improved calculating efficiency while taking account of accuracy,and adapted in conditions with complex velocity models.
作者 王静男 孙章庆 孙建国 崔栋 韩复兴 高正辉 WANG Jingnan;SUN Zhangqing;SUN Jianguo;CUI Dong;HAN Fuxing;GAO Zhenghui(College of Geo-exploration Science and Technology,Jilin University,Changchun 130026,China;Research Institute of Petroleum Exploration&Development,Department of Geophysics,PetroChina,Beijing 100083,China)
出处 《世界地质》 CAS 2021年第4期935-944,共10页 World Geology
基金 国家重点研发计划课题(2019YFC0312004) 国家自然科学基金项目(42004127、42074150)资助。
关键词 程函方程 间断伽辽金 快速扫描法 Cuthill-McKee排序 并行算法 eikonal equation discontinuous Galerkin fast sweeping Cuthill-McKee ordering parallel methods
  • 相关文献

参考文献1

二级参考文献11

  • 1R. Tsai, L: Cheng, S. Osher and H. Zhao, Fast sweeping algorithms for a class of Hamilton-Jacobi equations, SIAM J. Numer. Anal., 41:2 (2003), 673-694.
  • 2J.N. Tsitsiklis, Efficient Algorithms for Globally Optimal Trajectories, IEEE T. Automat. Contr., 40:9 (1995), 1528-1538.
  • 3Y. Zhang, J. Qian and H. Zhao, High order fast sweeping methods for static Hamilton-Jacobi equations, J. Sci. Comput., 29 (2006), 25-56.
  • 4H. Zhao, Fast sweeping method for Eikonal equations, Math. Comput., 74 (2005), 603-627.
  • 5H. Zhao, S. Osher, B. Merriman and M. Kang, Implicit and non-parametric shape reconstruction from unorganized points using variational level set method, Comput. Vis. Image Und., 80:3 (2000), 295-319.
  • 6M. Boue and P. Dupuis, Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control, SIAM J. Numer. Anal., 36:3 (1999), 667-695.
  • 7C. Kao and S. Osher and J. Qian, Lax-Friedrichs Sweeping Scheme for Static Hamilton-Jacobi Equations, J. Comput. Phys., 196:1 (2004), 367-391.
  • 8C. Kao and S. Osher and R. Tsai, Fast Sweeping Methods for Hamilton-Jacobi Equations, SIAM J. Numer. Anal., 42 (2005), 2612-2632.
  • 9J. Qian and Y. Zhang and H. Zhao, Fast sweeping methods for Eikonal equations on triangulated meshes, SIAM J. Numer. Anal., 45 (2007), 83-107.
  • 10J. Qian, Y. Zhang and H. Zhao, Fast sweeping method for static convex Hamilton-Jacobi equations, J. Sci. Comput., to appear.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部