期刊文献+

基于骨骼数据特征的人体行为识别方法综述 被引量:3

Survey of Human Action Recognition Methods Based on Skeleton DataFeatures
下载PDF
导出
摘要 人体行为识别是人工智能领域的一个研究热点,相对于视频、运动流等数据,人体骨骼数据具有简洁性和矢量计算的高效性。从基于传统机器学习的手工特征提取方法和基于深度学习的深度特征提取方法两方面对基于骨骼数据的人体行为识别相关研究进行综述。将手工特征概括为物理属性特征和统计属性特征,将深度特征按卷积神经网络、循环神经网络、图卷积神经网络及混合神经网络等类别对基于骨骼数据的人体行为识别方法及其优缺点进行逐一阐述,并对相关的特征提取方法、技术路线、模型特点及识别率等进行分析与总结。 Human action recognition is a research hotspot in the field of artificial intelligence,compared with video,motion stream data,hu⁃man skeleton data has simplicity and high efficiency of vector calculation.The related works of human action recognition based on skeleton da⁃ta are reviewed from two aspects:manual feature extraction method based on traditional machine learning and deep feature extraction method based on deep learning.The manual features are summarized as physical attribute features and statistical attribute features,according to the depth feature,the human action recognition method based on skeleton data and its advantages and disadvantages are described one by one ac⁃cording to convolution neural network,recurrent neural network,graph convolution network and hybrid neural network.The feature extraction method,technical route,model characteristics and recognition rate are analyzed and summarized in tabular form.
作者 孙满贞 张鹏 苏本跃 SUN Man-zhen;ZHANG Peng;SU Ben-yue(School of Computer and Information,Anqing Normal University,Anqing 246133,China;School of Mathematics and Computer,Tongling University,Tongling 244061,China)
出处 《软件导刊》 2022年第4期233-239,共7页 Software Guide
基金 安徽省自然科学基金项目(2108085QF269) 安徽省领军人才团队项目(皖教秘人[2019]16号)。
关键词 人体行为识别 骨骼数据 手工特征 深度特征 human action recognition skeleton data manual feature deep feature
  • 相关文献

参考文献6

二级参考文献65

  • 1Fujiyoshi H, Lipton A J, Kanade T. Real-time human mo- tion analysis by image skeletonization. IEICE Transactions on Information and Systems, 2004, 87-D(1): 113-120.
  • 2Chaudhry R, Ravichandran A, Hager G, Vidal R. His- tograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of hu- man actions. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1932-1939.
  • 3Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Con- ference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 886-893.
  • 4Lowe D G. Object recognition from local scale-invariant fea- tures. In: Proceedings of the 7th IEEE International Confer- ence on Computer Vision. Kerkyra: IEEE, 1999. 1150-1157.
  • 5Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local SVM approach. In: Proceedings of the 17th In- ternational Conference on Pattern Recognition. Cambridge: IEEE, 2004. 32-36.
  • 6Dollar P, Rabaud V, Cottrell G, Belongie S. Behavior recog- nition via sparse spatio-temporal features. In: Proceedings of the 2005 IEEE International Workshop on Visual Surveil- lance and Performance Evaluation of Tracking and Surveil- lance. Beijing, China: IEEE, 2005.65-72.
  • 7Rapantzikos K, Avrithis Y, Kollias S. Dense saliency-based spatiotemporal feature points for action recognition. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1454-1461.
  • 8Knopp J, Prasad M, Willems G, Timofte R, Van Gool L. Hough transform and 3D SURF for robust three dimensional classification. In: Proceedings of the llth European Confer- ence on Computer Vision (ECCV 2010). Berlin Heidelberg: Springer. 2010. 589-602.
  • 9Klaser A, Marszaeek M, Schmid C. A spatio-temporal de- scriptor based on 3D-gradients. In: Proceedings of the 19th British Machine Vision Conference. Leeds: BMVA Press, 2008. 99.1-99.10.
  • 10Wang H, Ullah M M, Klaser A, Laptev I, Schmid C. Evalua- tion of local spatio-temporal features for action recognition. In: Proceedings of the 2009 British Machine Vision Confer- ence. London, UK: BMVA Press, 2009. 124.1-124.11.

共引文献190

同被引文献37

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部