期刊文献+

用于太阳能超临界CO_(2)布雷顿循环的流态化颗粒换热试验与模拟 被引量:2

EXPERIMENT AND SIMULATION OF FLUIDIZING-PARTICLE HEAT EXCHANGER FOR SUPERCRITICAL CO_(2) BRAYTON CYCLE OF CSP
下载PDF
导出
摘要 搭建30 kW浅层多级流态化颗粒换热试验台,在约1.5倍临界流化速度、换热器采用直管管束逆流形式布置时颗粒侧换热系数可达590~860 W/(m^(2)·K)。采用双欧拉流体模型对流化床内水平埋管管束换热进行数值模拟,模拟结果与试验结果偏差在10%以内。利用析因设计与线性回归模型研究颗粒粒径、颗粒导热系数和流化气体速度对流态化换热效果的影响。发现颗粒粒径是换热系数的主要影响因素,流化气体速度是次要因素。对于100 MW级太阳能超临界CO_(2)布雷顿循环系统,流态化颗粒换热温度范围为650~900℃,换热器热效率约为98.7%,效率约为80.6%,效能约为61.9%,满足设计要求。 A lab-scale 30 kW particle heat exchanger of fluidized bed was designed and tested,with straight tube bundles for countercurrent-flow heat exchange.The heat transfer coefficient of particle side reached 590-860 W/(m^(2)·K)at a fluidization speed of1.5 times of the critical.Euler-Euler Two-Fluid Model was adopted to simulate heat transfer characteristics between fluidizing particles and immersed horizontal tubes.The deviation was within 10%between simulation and experimental results.Factorial design and linear regression model were used to study the effects of particle size,particle thermal conductivity and fluidizing gas velocity on heat transfer It was found that the particle size was a main factor while the fluidization speed was a minor.As to a 100 MW supercritical CO_(2)Brayton system of CSP,the temperature range of heat exchanger was 650-900℃,and the thermal efficiency was about 98.7%,exergy efficiency was about 80.6%,effectiveness was about 61.9%.
作者 应振镇 杨天锋 陈冬 倪明江 岑可法 肖刚 Ying Zhenzhen;Yang Tianfeng;Chen Dong;Ni Mingjiang;Cen Kefa;Xiao Gang(State Key Laboratory of Clean Energy Utilization of Zhejiang University,Hangzhou 310027,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2022年第3期274-281,共8页 Acta Energiae Solaris Sinica
基金 浙江省杰出青年基金(LR20E060001) 国家重点研发计划(2018YFB1501002)。
关键词 太阳能热发电 流态化换热 布雷顿循环 超临界 CO_(2) 试验 模拟 solar thermal power generation heat transfer-fluidized beds Brayton cycle supercritical carbon dioxide experiments simulation
  • 相关文献

参考文献1

二级参考文献10

  • 1骆仲泱,岑可法,倪明江.燃煤循环流化床燃烧的综合数学模型[J].工程热物理学报,1993,14(1):92-96. 被引量:4
  • 2Ambler J P A,Miline B J,Berruti F,et al.Reside nce Time Distribution of Solids in a Circulating Fluidized Bed:Experimental and Modelling Studies[J].Chem Engng Sci,1990,45:2179-2186.
  • 3Patience G S,Chaouki J,Kennedy.Solids Residence Time Distribut ion in CFB Reactors[A].In:Basu P,Horio M,Hasatani M.Circulating Fluidized Bed Technology Ⅲ[C].New York:Pergamon Press,1991.599-604.
  • 4Du Bing,Wei Fei,Wang Zhiguo.Effect of Particle Size on Solids Mixing in a FCC Riser[A].In:Werther J.Circulating Fluidized Bed Technology Ⅵ [C].Frankfurt:DECHEMA e.V.,1999.405-410.
  • 5Berruti F,Chaouki J,Godfroy L,et al.Hydrodynam ics of Circulating Fluidized Bed Risers:a Review[J].Can J Chem Engng,1995,73:5 79-602.
  • 6Zhou J,Grace J R,Lim C J,et al.Particle Veloci ty Profiles in a Circulating Fluidized Bed of Square Cross-Section[J].Chem En gng Sci,1995,50(2):237-244.
  • 7Zhang W,Johnsson F,Bolekner.Fluid-Dynamic Boundary Layers in CFB Boilers[J].Chem Engng Sci,1995,50(2):201-210.
  • 8Werther J.Fluid Mechanics of Large-Scale CFB Units[A].In: Avidan A.Circulating Fluidized Bed Technology Ⅳ[C].New York:Pergamon Press,19 94.1-16.
  • 9白丁荣,金涌,俞芷青,姚文虎.快速流态化两通道模型[J].化工学报,1990,41(1):10-18. 被引量:12
  • 10池作和,牛长山,许晋源.循环床固体颗粒停留时间分布[J].工程热物理学报,1989,10(4):449-451. 被引量:1

共引文献9

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部