期刊文献+

基于S-SLLE的风电机组齿轮箱故障诊断方法研究 被引量:4

FAULT DIAGNOSIS METHOD OF WIND TURBINE GEARBOX BASED ON S-SLLE
下载PDF
导出
摘要 针对风电机组齿轮箱结构复杂、受交变载荷和恶劣工作环境影响容易出现故障导致停机的问题,提出基于统计学K-均值聚类理论的统计型监督式局部线性嵌入流形学习(S-SLLE)特征维数约简方法,首先通过对齿轮箱振动信号时频域故障特征提取,剔除冗余特征向量,减少诊断模型的复杂度和计算量,再利用RBF核支持向量机分类器建立诊断模型,对S-SLLE提取的特征向量进行分类识别,以提高故障诊断模型的识别率。最后利用MFS机械故障模拟综合实验系统进行齿轮箱多类振动故障实验,通过对其实验故障信号的分析处理,其诊断实例结果验证了提出的S-SLLE RBF-SVM诊断模型能准确有效地进行风电机组齿轮箱故障诊断识别。 Because of the complicated structure of wind turbine gearbox,it is easy to be shut down due to the influence of alternating load and harsh working environment.In order to improve the recognition rate of fault diagnosis model,the feature dimension reduction method of the statistical supervised locally linear embedding manifold learning(S-SLLE)based on K-means classification theory was proposed.Firstly,the time-frequency domain fault features of gearbox vibration signals are extracted,and the redundancy feature vector are taken out,so the complexity and calculation amount of the diagnosis model are reduced,then the diagnosis model based on the RBF kernel support vector machine classifier is used to establish to diagnose and identify the feature vector extracted by S-SLLE.Finally,the Machinery Fault Simulator was used to simulate multiple vibration fault experiments on the gearbox.Through the analysis and processing of the experimental fault signals,the results verify that the proposed S-SLLE RBF-SVM diagnosis model can identify the wind turbine gearbox fault effectively and accurately.
作者 王翔 王金平 许万军 Wang Xiang;Wang Jinping;Xu Wanjun(School of Energy and Engineering,Nanjing Institute of Technology,Nanjing 211167,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2022年第3期343-349,共7页 Acta Energiae Solaris Sinica
基金 南京工程学院科研基金(ZKJ201606,ZKJ201703)。
关键词 风电机组 特征提取 支持向量机 流形学习 齿轮箱振动故障 wind turbines feature extraction support vector machines manifold learning gearbox vibration fault
  • 相关文献

参考文献2

二级参考文献40

  • 1郭太英,黎发贵.从国外风电发展探讨我国风电发展思路[J].水电勘测设计,2006(2):20-24. 被引量:10
  • 2唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 3贺娇.风能资源详查将推动产业发展[N].中国能源报,2010-02-01(15).
  • 4中国风能协会.2009年中国风电装机容量统计[R].北京:CWEA,2010.
  • 5国际新能源网.财政支持新能源的政策体系趋于完善和多样化[EB/OL].(2009-7-14)[2010-04-1].http:www.in-en.com/newenergy/html/newenergy-141514-1564403796.html.
  • 6李俊峰,高虎,王仲颖,等.2008年中国风电发展报告[R].北京:中国环境科学出版社,2008.
  • 7Caithness Windfarms Information Forum.Summary of wind turbine accident data to 31st March 2010[EB/OL].(2010-03-31)[2010-04-15].http://www.caithnesswindfarms.co.uk/page4.htm.
  • 8RIBRANT J.Reliability performance and maintenance-a survey of failures in wind power systems[D].Sweden:Royal Institute of Technology,2006.
  • 9西班牙EHN公司风电项目开发、运行、维护的经验[EB/OL].(2010-03-31)[2010-04-15].htto://www.windpowerchina.en/node/428.
  • 10HAMEED Z,HONG Y S,CHOY M,et al.Condition monitoring and fault detection of wind turbines and related,algorithms:A review[J].Renewable and Sustainable Energy Reviews,2009(13):1-39.

共引文献195

同被引文献39

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部