摘要
针对风电机组齿轮箱结构复杂、受交变载荷和恶劣工作环境影响容易出现故障导致停机的问题,提出基于统计学K-均值聚类理论的统计型监督式局部线性嵌入流形学习(S-SLLE)特征维数约简方法,首先通过对齿轮箱振动信号时频域故障特征提取,剔除冗余特征向量,减少诊断模型的复杂度和计算量,再利用RBF核支持向量机分类器建立诊断模型,对S-SLLE提取的特征向量进行分类识别,以提高故障诊断模型的识别率。最后利用MFS机械故障模拟综合实验系统进行齿轮箱多类振动故障实验,通过对其实验故障信号的分析处理,其诊断实例结果验证了提出的S-SLLE RBF-SVM诊断模型能准确有效地进行风电机组齿轮箱故障诊断识别。
Because of the complicated structure of wind turbine gearbox,it is easy to be shut down due to the influence of alternating load and harsh working environment.In order to improve the recognition rate of fault diagnosis model,the feature dimension reduction method of the statistical supervised locally linear embedding manifold learning(S-SLLE)based on K-means classification theory was proposed.Firstly,the time-frequency domain fault features of gearbox vibration signals are extracted,and the redundancy feature vector are taken out,so the complexity and calculation amount of the diagnosis model are reduced,then the diagnosis model based on the RBF kernel support vector machine classifier is used to establish to diagnose and identify the feature vector extracted by S-SLLE.Finally,the Machinery Fault Simulator was used to simulate multiple vibration fault experiments on the gearbox.Through the analysis and processing of the experimental fault signals,the results verify that the proposed S-SLLE RBF-SVM diagnosis model can identify the wind turbine gearbox fault effectively and accurately.
作者
王翔
王金平
许万军
Wang Xiang;Wang Jinping;Xu Wanjun(School of Energy and Engineering,Nanjing Institute of Technology,Nanjing 211167,China)
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2022年第3期343-349,共7页
Acta Energiae Solaris Sinica
基金
南京工程学院科研基金(ZKJ201606,ZKJ201703)。
关键词
风电机组
特征提取
支持向量机
流形学习
齿轮箱振动故障
wind turbines
feature extraction
support vector machines
manifold learning
gearbox vibration fault