期刊文献+

引导滤波和对数变换算法融合的多尺度Retinex红外图像增强 被引量:11

Multiscale Retinex Infrared Image Enhancement Based on the Fusion of Guided Filtering and Logarithmic Transformation Algorithm
下载PDF
导出
摘要 针对采用红外成像仪获取红外图像边缘模糊、对比度差等缺点造成图像视觉效果差、质量低等问题。以多尺度Retinex算法为框架,依据引导滤波保边和梯度保持性,提出引导滤波和对数变换算法融合的多尺度Retinex红外图像增强方法。首先,用引导滤波替换MSR算法中的高斯滤波来估计照度分量。其次,将照度分量经过对数变换处理,执行低灰度部分扩展和高灰度部分压缩。最后,引导滤波分割得到的细节层图像线性放大并与MSR(多尺度Retinex)处理后的图像叠加,获得增强的红外图像。实验证明,与传统MSR算法和引导滤波相比该算法效果明显,可以有效地提高红外图像质量。 Problems such as blurred edges and poor contrast in infrared images acquired by an infrared imager lead to poor visual effects and low image quality.Based on the multi-scale Retinex(MSR)algorithm,a MSR infrared image enhancement method based using guided filter edge preserving and gradient preserving is proposed.Firstly,a guided filter is used in place of the Gaussian filter in the MSR algorithm to estimate the illuminance component.Secondly,the illumination component is processed via logarithmic transformation,expanding the low end of the gray scale and compressing the high end.Finally,the detail layer image obtained using guided filtering is linearly amplified and superimposed with the MSR processed image to obtain an enhanced infrared image.Experimental results demonstrate that the proposed algorithm can effectively improve the quality of infrared image compared with the conventional MSR algorithm and guided filter.
作者 陈文艺 杨承勋 杨辉 CHEN Wenyi;YANG Chengxun;YANG Hui(School of Modern Posts,Xi’an University of Posts and Telecommunications,Xi’an 710061,China;School of Electrical Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
出处 《红外技术》 CSCD 北大核心 2022年第4期397-403,共7页 Infrared Technology
关键词 红外图像 图像增强 多尺度RETINEX 引导滤波 对数变换 infrared image image enhancement MSR guided filtering Logarithmic transformation
  • 相关文献

参考文献8

二级参考文献53

  • 1戴景民,汪子君.红外热成像无损检测技术及其应用现状[J].自动化技术与应用,2007,26(1):1-7. 被引量:83
  • 2聂劲松,汪震.红外偏振成像探测技术综述[J].红外技术,2006,28(2):63-67. 被引量:33
  • 3Bushlin Y, Lessin A, Reinov A. Comparison of thermal modeling and experimental results of a generic model for ground vehiclc[C]//Proc, of SPIE, 2006, 6239: 62390-1-10.
  • 4Alain Malaplate, Peter Grossmann, Frederic Schwenger. CUBI-a test Body for thermal Object Model Validation [C]//Proc. of SPIE, 2007, 6543: 654305-1.
  • 5Earth Online[EB/OL]. Google Earth. [2013-01-15] http://www.earthol. com.
  • 6Zhang D, Lee DJ, Tippetts BJ, et al. Date quality evaluation using short-wave infrared imaging [J]. Journal of Food Engi- neering, 2014, 141 (1): 74-84.
  • 7Hodapp KW. Infrared imaging and speetroscopy with small tele- scopes [J]. Contributions of the Astronomical Observatory Skalnatleso, 2014, 43 (3): 200-208.
  • 8Lai R, Yang YT, Wang BJ, et al. A quantitative measure based infrared image enhancement algorithm using plateau histogram [J]. Optics Communications, 2010, 283 (21): 4283-4288.
  • 9Su R, Sun CM, Zhang C, et al. A new method for linear fea- ture and junction enhancement in 2D images hased on morpho- logical operation, oriented anisotropic Gaussian function and Hessian information [J]. Pattern Recognition, 2014, 47 (10) : 3193-3208.
  • 10Mosey SA, Charlton PC, Wells L Resolution enhancement of ul- trasonic b-mode images [J]. Insight, 2013, 55 (2): 78-83.

共引文献66

同被引文献133

引证文献11

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部