摘要
近年来图像融合技术广泛应用到电力行业,通过不同类型的图像传感器采集电力设备和输电线的图像,经过红外和可见光的图像融合处理,实现电力设备及输电线的智能巡视和故障分析。文中提出一种基于自适应加权的多尺度图像融合算法,采用配准后的可见光和红外图像,进行多尺度小波分解,根据高低频的不同图像特征,低频采用自适应加权融合规则,高频采用绝对值最大的融合规则,将融合后的小波系数进行逆变换后得到全新的融合图像。通过对融合图像的主观和客观评价分析,证明融合算法解决了单一图像传感器采集图像存在的完整性问题,提高了融合图像细节信息,提升了场景的置信度。
In recent years,image fusion technology has been widely used in the power industry.Different types of image sensors are used to collect images of power equipment and transmission lines.Through the fusion of infrared and visible light images,intelligent inspection and fault analysis of power equipment and transmission lines can be realized.This article first briefly introduces common image fusion algorithms and fusion image evaluation standards.A multi-scale image fusion algorithm based on adaptive weighting is proposed,which uses the registered visible light and infrared images to perform multi-scale wavelet decomposition.According to the different image characteristics of high and low frequencies,the low frequency adopts the adaptive weighted fusion rule and the high frequency adopts the fusion rule with the largest absolute value.The fused wavelet coefficients are inversely transformed to obtain a new fused image.Subjective and objective evaluation and analysis of the fusion image confirm that the fusion algorithm solves the integrity problem of the image collected by a single image sensor,enhances the detailed information of the fusion image,and improves the confidence of the scene.
作者
胡雪凯
罗蓬
李铁成
蔡玉汝
马娜
周雪青
HU Xuekai;LUO Peng;LI Tiecheng;CAI Yuru;MA Na;ZHOU Xueqing(State Grid Hebei Electric Power Research Institute,Shijiazhuang 050021,China;NARI Group Corporation,State Grid Electric Power Research Institute,Nanjing 210061,China;Wuhan NARI Limited Liability Company,State Grid Electric Power Research Institute,Wuhan 430074,China;Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China)
出处
《红外技术》
CSCD
北大核心
2022年第4期404-409,共6页
Infrared Technology
基金
国家电网项目《基于云边计算协同的异构传感器网络开放式接入网关与组网技术研究》。
关键词
红外与可见光
图像融合
电力设备
多源传感器
infrared and visible light
image fusion
electric equipment
multi-sensor