期刊文献+

腐蚀-配位工程构建含有微量Pt的2D-3D纳米结构高效电解水催化剂

Corrosive-coordinate engineering to construct 2D-3D nanostructure with trace Pt as efficient bifunctional electrocatalyst for overall water splitting
原文传递
导出
摘要 开发具有良好的催化性能和稳定性的析氢反应(HER)和析氧反应(OER)的电催化剂对水分解产氢的商业化起着关键作用.本文通过简单、可扩展的腐蚀配位方法,将金属氢氧化物和金属有机骨架(MOF)组成的二维-三维(2D-3D)纳米结构原位装饰在泡沫Ni Fe (Pt-Ni Fe PBA)上.所设计的特殊形态有利于在电催化过程中提供丰富的活性位点、优化反应途径和加速传质.因此,合成的Pt-Ni Fe PBA在1 mol L;KOH中HER和OER在10 m A cm^(-2)时具有29和210 m V的过电位.值得注意的是,在10 m A cm^(-2)时该催化剂仅需21 m V即可驱动1 mol L;KOH海水,并具有出色的稳定性.此外,将合成的Pt-Ni Fe PBA用作双功能电催化剂时,只需1.46和1.48 V即可以达到10 m A cm^(-2).此外,间歇性的可持续能源,如热能、风能和太阳能可以为该水分解器提供动力. The development of efficient electrocatalysts for hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) with excellent catalytic performance and stability plays key roles in the commercialization of water splitting to generate hydrogen energy. Herein, a 2 D-3 D nanostructure composed of metal hydroxides and Prussian blue analogus(PBA) was in-situ decorated onto the Ni Fe foam(Pt-Ni Fe PBA) through a facile and scalable corrosive-coordinate approach. The specifically designed morphology favored the provision of abundant active sites, optimized the reaction pathway, and accelerated mass transport during the electrocatalytic process. Consequently, the as-synthesized Pt-Ni Fe PBA reached 10 m A cm^(-2) with small overpotentials of 29 and210 m V in 1 mol L;KOH deionized water for HER and OER,respectively. Remarkably, Pt-Ni Fe PBA required an overpotential of 21 m V to drive 10 m A cm^(-2) in seawater containing1 mol L;KOH with prominent durability. Moreover, with the as-synthesized Pt-Ni Fe PBA as bifunctional electrocatalyst,the Pt-Ni Fe PBA||Pt-Ni Fe PBA electrolyzer needed 1.46 and1.48 V to drive 10 m A cm^(-2) in 1 mol L;KOH with deionized water and 1 mol L;KOH with seawater, respectively. Remarkably, sustainable energies were utilized to power the overall water splitting and stored as easily portable hydrogen energy.
作者 陈智 刘东政 高玉肖 赵莹 肖卫平 徐广蕊 马天翼 吴则星 王磊 Zhi Chen;Dongzheng Liu;Yuxiao Gao;Ying Zhao;Weiping Xiao;Guangrui Xu;Tianyi Ma;Zexing Wu;Lei Wang(Key Laboratory of Eco-chemical Engineering,Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology,Qingdao International Cooperation Base of Ecological Chemical industry and Intelligent Manufacturing,College of Chemistry and Molecular Engineering,Qingdao University of Science and Technology,Qingdao 266042,China;College of Science,Nanjing Forestry University,Nanjing 210037,China;Centre for Translational Atomaterials,Swinburne University of Technology,John Street,Hawthorn,VIC 3122,Australia)
出处 《Science China Materials》 SCIE EI CAS CSCD 2022年第5期1217-1224,共8页 中国科学(材料科学(英文版)
基金 the support from the National Natural Science Foundation of China (22002068, 51772162 and 52072197) the Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China (2019KJC004) the Outstanding Youth Foundation of Shandong Province (ZR2019JQ14) Taishan Scholar Young Talent Program (tsqn201909114) the Major Scientific and Technological Innovation Project (2019JZZY020405) the Major Basic Research Program of Natural Science Foundation of Shandong Province (ZR2020ZD09) China Postdoctoral Science Foundation (2021M691700) the Natural Science Foundation of Shandong Province of China (ZR2019BB002, ZR2018BB031) Australian Research Future Fellowship (FT210100298) CSIRO Energy Centre, and the Victorian Government’s support through the provision of a grant from Veski-Study Melbourne Research Partnerships Project。
  • 相关文献

参考文献14

二级参考文献29

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部