摘要
方程的精确解是方程的非线性现象以及它本身所蕴含的物理意义的一种具体表现,而不变子空间则可以理解为方程的稳定区域.在给出一类非线性薄膜方程所对应的几种不变子空间后,通过两边系数比较得到了其相应的有限维动力系统.再借助Mittag-Leffler函数的一些基本性质以及拉普拉斯变换等求解该系统,从而构造得到了分数阶非线性薄膜方程的一些经典类型的精确解,如指数型解、三角函数型解、多项式型解.
The exact solution of the equation is a concrete expression of the nonlinear phenomenon of the equation and its inherent physical meaning,and the invariant subspace can be understood as the stable range of the equation.After giving the invariant subspaces corresponding to nonlinear thin film equations,the corresponding finite dimensional dynamic systems are obtained by comparing the coefficients on both sides.Then,by means of some basic properties of Mittag-Leffler function and Laplace transform,some classical exact solutions of fractional nonlinear thin film equations are constructed,such as exponential solution,trigonometric solution and polynomial solution.
作者
周碧蓉
屈改珠
ZHOU Birong;QU Gaizhu(School of Mathematics and Statistics,Ningbo University,Ningbo Zhejiang 315211,China;School of Mathematics and Statistics,Weinan Normal University,Weinan Shanxi 714099,China)
出处
《大学数学》
2022年第2期12-16,共5页
College Mathematics
基金
国家自然科学基金(11631007,11971251)
陕西省自然科学基金项目(2021JM-521)
渭南市2019年度重点研发计划项目(2019ZDYF-JCYJ-118)。