期刊文献+

改进SIFT算法的图像双向配准技术 被引量:1

Image bidirectional registration technology based on improved SIFT algorithm
下载PDF
导出
摘要 为提高图像配准的效率和准确度,满足多种应用场景的适用性,文章提出一种基于k-d树的双向配准算法。该算法运用准欧氏距离进行匹配,运算简单,在原图像与待配准图像中双向搜索相匹配的特征点,图像配准的准确率高。实验结果表明,改进的算法准确率提高了6%,时间缩短了31%。 To improve the efficiency and accuracy of image registration and adapt to various application scenarios,a bidirectional registration algorithm based on K-D tree is proposed.The algorithm uses quasi-Euclidean distance to match images,and the calculation is simple.A bidirectional search is conducted for matching feature points between the original image and the image to be registered with high accuracy.Experimental results show that the improved algorithm improves the accuracy by 6%and shortens the time by 31%.
作者 刘清清 李士心 孙夏丽 王坤 LIU Qingqing;LI Shixin;SUN Xiali;WANG Kun(School of Electronic Engineering,Tianjin University of Technology and Education,Tianjin 300222,China)
出处 《天津职业技术师范大学学报》 2022年第1期58-62,共5页 Journal of Tianjin University of Technology and Education
基金 天津市科技特派员项目(19JCTPJC41500).
关键词 尺度不变特征变换(SIFT)算法 准欧氏距离 双向配准 图像处理 scale invariant feature transformation(SIFT)algorithm quasi Euclidean distance bidirectional registration image processing
  • 相关文献

参考文献9

二级参考文献57

  • 1赵录刚,吴成柯.基于随机抽样一致性的多平面区域检测算法[J].计算机应用,2008,28(S2):154-157. 被引量:6
  • 2孙向军,曹立鑫,刘凤玉.基于角仿射不变的特征匹配[J].中国图象图形学报(A辑),2004,9(5):589-593. 被引量:5
  • 3侯舒维,郭宝龙.一种图像自动拼接的快速算法[J].计算机工程,2005,31(15):70-72. 被引量:42
  • 4D G Lowe. Distinctive image features from scale invariant keypoints [ J]. International Journal of Computer Vision, 2004,60(2) : 91- 110.
  • 5Cordeliaschmid, Rogermohr. Loeal Gray value Invaiiants for Image Retrieval [ J ]. Pattern Analysis and Maehine Intelligenee, IEEE Transactions, VOlumel9, 15-sues May 1997. 530-535.
  • 6骞森,朱剑英.基于改进的SIFT特征的图像双向匹配算法[J].机械科学与技术,2007,26(9):1179-1182. 被引量:44
  • 7Harris C.Stephens M.A combined corner and edge detector[A].Proc.of The Fourth Alvey Vision Conference[C],Manchestsr,UK,1988:147-151
  • 8Tomasi C,Kanade T.Detection and Tracking of Point Features[R].Carnegie Mellon University Technical Report CMU-CS-91-132,Pittsburgh,USA,Apr 1991
  • 9Lowe D G.Object recognition from local scale-invariant features[A].International Conference on Computer Vision[C],Corfu,Greece,Sep 1999:1150-1157
  • 10Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110

共引文献163

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部