摘要
为提高图像配准的效率和准确度,满足多种应用场景的适用性,文章提出一种基于k-d树的双向配准算法。该算法运用准欧氏距离进行匹配,运算简单,在原图像与待配准图像中双向搜索相匹配的特征点,图像配准的准确率高。实验结果表明,改进的算法准确率提高了6%,时间缩短了31%。
To improve the efficiency and accuracy of image registration and adapt to various application scenarios,a bidirectional registration algorithm based on K-D tree is proposed.The algorithm uses quasi-Euclidean distance to match images,and the calculation is simple.A bidirectional search is conducted for matching feature points between the original image and the image to be registered with high accuracy.Experimental results show that the improved algorithm improves the accuracy by 6%and shortens the time by 31%.
作者
刘清清
李士心
孙夏丽
王坤
LIU Qingqing;LI Shixin;SUN Xiali;WANG Kun(School of Electronic Engineering,Tianjin University of Technology and Education,Tianjin 300222,China)
出处
《天津职业技术师范大学学报》
2022年第1期58-62,共5页
Journal of Tianjin University of Technology and Education
基金
天津市科技特派员项目(19JCTPJC41500).
关键词
尺度不变特征变换(SIFT)算法
准欧氏距离
双向配准
图像处理
scale invariant feature transformation(SIFT)algorithm
quasi Euclidean distance
bidirectional registration
image processing