期刊文献+

老年人跌倒检测系统研究与设计 被引量:1

Research and Design of Fall Detection System for the Elderly
下载PDF
导出
摘要 为减少跌倒对老年人造成的身心伤害,设计了一套跌倒检测系统.将跌倒检测装置佩戴在老年人腰间,传感器可以实时采集老年人日常活动数据,检测系统根据采集到的数据通过阈值分类和支持向量机分类器双重检测识别老年人是否跌倒.该系统检测算法在设计时综合了阈值分类检测的高效性和支持向量机分类检测的准确性.一旦老年人跌倒,检测系统能够第一时间发送求救信号给120急救中心及监护人.实验表明,当有跌倒行为发生时,系统能及时报警,准确率达到预期效果. In order to reduce the physical and mental injury of the elderly caused by falls,a set of fall detection system was designed. When the elderly wear the system detection device on the waist,the sensor can collect real-time data of the elderly′s daily activities. According to the collected data,the detection system identifies whether the elderly fall through the dual detection of threshold classification and support vector machine classifier. The detection algorithm of this system integrates the high efficiency of threshold classification detection and the accuracy of support vector machine classification detection. In case of falling,send a distress signal to 120 emergency center and family members in the first time. The experiment shows that when the fall occurs,the alarm can be timely,and the accuracy rate reaches the desired effect.
作者 衡友跃 韩占伟 杨忆 HENG You-yue;HAN Zhan-wei;YANG Yi(Computer Department,Huaibei Vocational and Technical College,Huaibei 235000,China;School of Computer Science,Huaibei Normal University,Huaibei 235000,China)
出处 《通化师范学院学报》 2022年第4期1-5,共5页 Journal of Tonghua Normal University
基金 2019年度安徽省高校自然科学研究重点项目“基于云平台的老年人跌倒检测系统研究与设计”(KJ2019A0994) 2020年度安徽省高校教学研究重点项目“移动应用开发专业人才培养质量标准研究”(2020jyxm1712)。
关键词 老年人 跌倒检测 阈值 支持向量机 the elderly fall detection threshold Support Vector Machine(SVM)
  • 相关文献

参考文献13

二级参考文献70

  • 1林锦华,陈渊.静压预应力混凝土管桩施工质量控制[J].石油工程建设,2004,30(4):54-55. 被引量:2
  • 2张鸽,陈书开.基于SVM的手写体阿拉伯数字识别[J].军民两用技术与产品,2005(9):41-43. 被引量:6
  • 3张丽娟,李舟军.分类方法的新发展:研究综述[J].计算机科学,2006,33(10):11-15. 被引量:20
  • 4Hammadi Nait-Charif and Stephen J. McKenna.Activity summarisation and fall detection in a supportive home environment[A]. 17th Pattern Recognition International Conference, 2004, (4): 323 - 326.
  • 5Caroline Rougier, Jean Meunier, Alain St-Arnaud and Jacqueline Rousseau. Monocular 3D head tracking to detect falls of elderly people[A]. Engineering in Medicine and Biology Society, 28th Annual International Conference of the IEEE, 2006:6384 - 6387.
  • 6Majd Alwan, Prabhu Jude Rajendran, Steve Kell, et al. A smart and passive floor-vibration based fall detector for elderly[A]. Information and Communication Technologies, 2006, (2): 1003 - 1007.
  • 7Jay Chen, Karric Kwong, Dennis Chang, et al. Wearable sensors for reliable fall detection[A]. Engineering in Medicine and Biology society, 27th Annual International Conference, 2005: 3551 - 3554.
  • 8N. Noury, A. Fleury, P. Rumeau, et al. Fall detection-principles and methods[A]. Engineering in Medicine and Biology Society, 29th Annual International Conference of the IEEE, 2007:1663 - 1666.
  • 9Maarit Kangas, Antti Konttila, Ilkka Winblad, et al. Determination of simple thresholds for accelerometry-based parameters for fall detection[A]. Engineering in Medicine and Biology Society, 29th Annual International Conference of the IEEE, 2007:1367 - 1370.
  • 10Sadigh S, Reimers A, Andersson R, et al. Falls and fall-relat- ed injuries among the elderly:a survey of residential-care fa- cilities in a Swedish municipality[ J]. Journal of Community Heahh ,2004,29 ( 2 ) : 129 - 140.

共引文献89

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部