期刊文献+

Impact of nanoparticle shape on thermo-solutal buoyancy induced lid-driven-cavity with inclined magnetic-field

原文传递
导出
摘要 The aim of this paper is to numerically investigate the influence of nanoparticles shape on heat and mass transport phenomena in a moving lid cavity under the combined effect of thermo-solutal buoyancy force and magnetic force.The governing equations are transformed into velocity-vorticity form of equations and solved using Galerkin's weighted residual finite-element-technique.The analysis has been carried out with parameters like buoyancy ratio(−5≤N≤5),magnetic field inclination angle(0°≤ϕ≤90°)with four shapes of Al_(2)O_(3) nanoparticle like bricks,blades,platelets and cylinders.The results revealed that the shape factor on Nusselt number is significant depending upon the inclined magnetic field and buoyancy ratio whereas on mass transfer the shape effect is negligible.The diffusion mode of transport process is stronger than the convection mode at higher inclination angle of magnetic field.Based on a given value of N andϕ,blade and cylinder shows the best performance in Nusselt and Sherwood number respectively except the platelet shape that shows maximum frictional loss in terms of wall shear stress.
出处 《Propulsion and Power Research》 SCIE 2022年第1期97-117,共21页 推进与动力(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部