摘要
研究了齐次Dirichlet边界下一类半线性分数阶反应扩散方程解的整体存在性和渐近行为.通过Caffarelli-Silvestre延拓方法将非局部的分数阶Laplacian算子转化为局部可变分的算子,再用Galёrkin方法在适当的假设条件下得到方程整体解的存在性,最后利用一些基本不等式得到方程解的渐近行为.
In this paper,the global solution and long time asymptotic behavior of the semilinear fractional reaction-diffusion equation have been studied with homogeneous Dirichlet boundary.The Caffarelli-Silvestre extension method was used to transform the nonlocal Laplacian problem into a variable local problem.Combing Galёrkin method,we can get the existence of solution.Lastly we utilize some inequalities to get long time asymptotic behavior of global solutions.
作者
彭红玲
樊明书
PENG Hongling;FAN Mingshu(School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China)
出处
《西南师范大学学报(自然科学版)》
CAS
2022年第4期45-51,共7页
Journal of Southwest China Normal University(Natural Science Edition)
基金
自然科学基金面上项目(11971331)
四川省科技创新团队项目(21CXTD0076).
关键词
分数阶反应扩散方程
整体存在性
渐近行为
fractional reaction-diffusion equation
global existence
asymptotic behavior