期刊文献+

Two-dimensional MXenes:New frontier of wearable and flexible electronics 被引量:5

原文传递
导出
摘要 Wearable electronics offer incredible benefits in mobile healthcare monitoring,sensing,portable energy harvesting and storage,human-machine interactions,etc.,due to the evolution of rigid electronics structure to flexible and stretchable devices.Lately,transition metal carbides and nitrides(MXenes)are highly regarded as a group of thriving two-dimensional nanomaterials and extraordinary building blocks for emerging flexible electronics platforms because of their excellent electrical conductivity,enriched surface functionalities,and large surface area.This article reviews the most recent developments in MXene-enabled flexible electronics for wearable electronics.Several MXeneenabled electronic devices designed on a nanometric scale are highlighted by drawing attention to widely developed nonstructural attributes,including 3D configured devices,textile and planer substrates,bioinspired structures,and printed materials.Furthermore,the unique progress of these nanodevices is highlighted by representative applications in healthcare,energy,electromagnetic interference(EMI)shielding,and humanoid control of machines.The emerging prospects of MXene nanomaterials as a key frontier in nextgeneration wearable electronics are envisioned and the design challenges of these electronic systems are also discussed,followed by proposed solutions.
出处 《InfoMat》 SCIE CAS 2022年第4期1-28,共28页 信息材料(英文)
  • 相关文献

参考文献9

二级参考文献94

  • 1Nuo Li,Ying Xie,Shuting Peng,Xiang Xiong,Kai Han.Ultra-lightweight Ti3C2Tx MXene modified separator for Li–S batteries:Thickness regulation enabled polysulfide inhibition and lithium ion transportation[J].Journal of Energy Chemistry,2020,29(3):116-125. 被引量:12
  • 2K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004).
  • 3A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007).
  • 4S. Guo and S. Dong, Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev. 40(5), 2644 (2011).
  • 5V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56(8), 1178 (2011).
  • 6T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Chemical functionalization of graphene and its applications, Prog. Mater. Sci. 57(7), 1061 (2012).
  • 7Q. Tang, Z. Zhou, and Z. Chen, Graphene-related nanomaterials: Tuning properties by functionalization, Nanoscale 5(11), 4541 (2013).
  • 8Q. Tang and Z. Zhou, Graphene-analogous low-dimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013).
  • 9M. Naguib and Y, Gogotsi, Synthesis of two-dimensional materials by selective extraction, Acc. Chem. Res. 48(1), 128 (2015).
  • 10Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. A 2(31), 12104 (2014).

共引文献167

同被引文献71

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部