期刊文献+

基于变分自编码器潜变量语义提炼的样本生成方法 被引量:1

Virtual Sample Generation Method Based on Semantic Meaning Extraction of VAE’s Latent Variables
下载PDF
导出
摘要 人工智能的逐步应用对行业的生产效率和技术变革影响显著,传统行业因样本收集难度大、成本高、涉及个人隐私等原因,进行深度学习时,面临着小样本和不平衡数据问题.现有的样本扩充方法存在着生成效果不能兼顾广泛性和合理性等问题.为此,提出一种基于变分自编码器潜变量语义提炼的样本扩充算法,利用神经网络的权重作为输入特征与潜变量相关性的度量,获取输入特征与变分自编码器潜变量的依赖关系,为潜变量赋予语义提供重要依据,实现显式控制潜变量的不同维度,生成满足总体分布且在原训练集未包含的样本.在对民用建筑结构安全数据库的样本扩充结果表明,该方法能有效生成特定属性的样本,能一定程度上解决小样本问题和不平衡数据问题. The application of artificial intelligent has been stimulating the productivity and technological revolution of industries. Traditional industries are facing small sample and imbalanced data problems due to the rarity nature of sample,cost and privacy issues. However, the sample generation results of existing methods are often limited to balancing generalization and validity. The purposed semantic meaning extraction of VAE’s latent variables based virtual sample generation method utilized the weights of encoder neural network as the measurement of dependency between input features and the latent variables. This method achieves flexible sample generation by controlling various dimensions of latent variables explicitly. The generated samples which satisfy the population distribution are not necessarily included in the original samples. The results of sample expansion of civil buildings structural safety databases show that the proposed method is capable of controllable generation of valid samples, and mitigating the problems of small sample and imbalanced data.
作者 王俊杰 焦柯 彭子祥 谭丽红 王文波 WANG Jun-Jie;JIAO Ke;PENG Zi-Xiang;TAN Li-Hong;WANG Wen-Bo(Guangdong Architectural Design and Research Institute Co.Ltd.,Guangzhou 510010,China)
出处 《计算机系统应用》 2022年第3期255-261,共7页 Computer Systems & Applications
基金 住房和城乡建设部2019年科学技术计划(2019-K-157)。
关键词 变分自编码器 语义提炼 虚拟样本生成 小样本数据 不平衡数据 variational autoencoder(VAE) semantic meaning extraction virtual sample generation small sample imbalanced data
  • 相关文献

参考文献4

二级参考文献56

  • 1温津伟,罗四维,赵嘉莉,黄华.通过创建虚拟样本的小样本人脸识别统计学习方法[J].计算机研究与发展,2002,39(7):814-818. 被引量:9
  • 2张莉,陈恭和.入侵检测系统中训练样本集的构造方法[J].计算机工程与应用,2006,42(28):145-146. 被引量:6
  • 3[1]M Kirby, L Sirovich. Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12(1): 103~108
  • 4[2]K Fukunaga. Introduction to Statistical Pattern Recognition. New York: Academic Press, 1991
  • 5[3]P N Belhumeur, J P Hespanha, D J Kriegman. Eigenfaces vs fisherfaces: Recognition using class specific linear projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 6[4]Liu Chenjun, H Wechsler. Probabilistic reasoning models for face recognition. In: Proc of the 1998 IEEE Computer Society Conf on CVPR. Santa Barbara, 1998. 827~832
  • 7[6]Pawan Sinha. Object recognition via image invariances. Investigative Ophthalmology and Visual Science, 1994, 35(4): 1626~1643
  • 8[7]D Beymer, T Poggio. Face recognition from one example view. In: Proc of the Int'l Conf of Computer Vision. Cambridge, MA, 1995. 500~507
  • 9[8]M Turk, A Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 13(1): 71~86
  • 10[9]Dempster, Laird, Rubin. Maximum-likelihood from incomplete data via the EM algorithm. Journal of Royal Statistical Society, 1977, B, 39(1): 1~38

共引文献55

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部