期刊文献+

结合孪生网络重检的长期目标跟踪算法 被引量:3

Long-term Target Tracking Algorithm Based on Twin Network Rechecking
下载PDF
导出
摘要 针对传统长期相关滤波器使用特征单一、跟踪失败后无法再次捕捉到目标的缺点,提出一种结合深度学习的多特征融合长期目标跟踪算法.本算法在长期相关跟踪算法(long-term correlation tracking,LCT)的基础上,采用多特征融合的方式,将局部二值模式特征、改进的方向梯度直方图特征以及颜色特征相融合,来提高跟踪算法的鲁棒性.由于LCT算法选择随机蕨分类器进行目标重检,对检测范围有局限性且重检精度较低,故采用基于深度学习的孪生网络实例搜索(SINT)方法对全局图像进行目标重检.本文的实验在OTB100数据集上进行,结果表明:本文算法与LCT算法相比,距离精度和成功率分别提升了13%和10.3%. The traditional long-term correlation filter uses a single feature and cannot capture the target again after tracking failure.Considering this,the study proposes a multi-feature fusion long-term target tracking algorithm combined with deep learning.On the basis of the long-term correlation tracking(LTC)algorithm,the proposed algorithm uses multi-feature fusion to join together the local binary pattern feature,the improved directional gradient histogram feature,and the color feature to promote the robustness of the tracking algorithm.Since the LCT algorithm adopts a random fern classifier to recheck the target,which has a limited detection range and low rechecking accuracy,the deep learning-based twin network instance search(SINT)method is employed to recheck the global image.The experiment in this study is carried out on the OTC100 dataset,and the results show that compared with the LCT algorithm,the proposed algorithm has improved the range accuracy and the success rate by 13%and 10.3%respectively.
作者 王林 郑有玲 WANG Lin;ZHENG You-Ling(Faculty of Automation and Information Engineering,Xi'an University of Technology,Xi'an 710048,China)
出处 《计算机系统应用》 2022年第4期188-195,共8页 Computer Systems & Applications
基金 陕西省科技计划重点项目(2017ZDCXL-GY-05-03)。
关键词 长期目标跟踪 相关滤波 特征融合 深度学习 目标重检 long-term object tracking correlation filter feature fusion deep learning target reinspection
  • 相关文献

参考文献3

二级参考文献219

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 3王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 4Bouwmans T, El Baf F, Vachon B. Background modeling using mixture of Gaussians for foreground detection: A survey. Recent Patents on Computer Science, 2008, 1(3) 219-237.
  • 5Wojek C, Dollar P, Schiele B, Perona P. Pedestrian detection: An evaluation o{ the state o{ the art. IEEE Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
  • 6Yilmaz A, Javed O, Shah M. Object trackingt A survey. ACM Computing Surveys (CSUR), 2006, 38(4) 1-29.
  • 7Wang X. Intelligent multi-camera video surveillance: A review. Pattern Recognition Letters, 2012, 34 (1) : 3-19.
  • 8Wu Y, Lira J, Yang M H. Online object tracking: A bench- mark//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013 2411-2418.
  • 9Andreopoulos A, Tsotsos J K. 50 years of object recognition: Directions forward. Computer Vision and Image Understanding, 2013, 117(8) 827-891.
  • 10Zhang X, Yang Y H, Han Z, et al. Object class detection: A survey. Association for Computing Machinery Computing Surveys (CSUR), 2013, 46(1) : 1311-1325.

共引文献710

同被引文献13

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部