期刊文献+

基于位置一步预测的核相关目标跟踪算法

Kernel Correlation Target Tracking Algorithm Based on One-step Position Prediction
下载PDF
导出
摘要 针对视频机动目标跟踪过程中前后两视频帧间目标移动距离过大导致目标丢失问题,提出一种基于位置一步预测的核相关目标跟踪算法.首先,提取当前帧目标区域灰度以及颜色特征,并分别对灰度特征和颜色特征进行梯度及颜色直方图运算,得到FHOG特征向量和颜色直方图;然后根据颜色直方图引入粒子滤波对下一帧图像中目标位置进行一步预测;进而,以预测到的目标位置为中心确定搜索区域;最终,在搜索区域基于FHOG特征结合核相关滤波修正当前目标位置的估计值.在此基础上,针对机动目标移动过程中产生的形变以及模糊问题,结合零截距与平均峰值相关能量,实现对形变和模糊问题的处理.实验结果表明,提出的新方法可以有效地提高在UADETRAC数据集的识别率,相比标准核相关滤波算法在成功率与准确率上分别提高11.96%与9.6%. To solve the problem of target loss caused by the large moving distance between two video frames during maneuvering target tracking in a video, this study proposes a kernel correlation target tracking algorithm based on onestep position prediction. Firstly, the gray scale and color feature of the target region in the current frame are extracted, and the gradient and color histogram operations of the gray scale feature and color feature are carried out respectively to obtain the FHOG feature vector and color histogram. Then, according to the color histogram, particle filter is introduced to predict the target position in the next frame. Further, the search area is determined with the predicted target position at the core. Finally, the estimated value of the current target position is corrected depending on the FHOG feature and the kernel correlation filtering in the search area. On this basis, the deformation and ambiguity generated during the movement of the maneuvering target are dealt with by the combination of the zero intercept and the average peak-tocorrelation energy. Experimental results show that the proposed method can effectively improve the recognition rate in the UA-DETRAC dataset, and the success rate and accuracy of the proposed method are 11.96% and 9.6% higher than those of the standard kernel correlation filter algorithm.
作者 石昌森 侯巍 杨琳琳 杨诗博 SHI Chang-Sen;HOU Wei;YANG Lin-Lin;YANG Shi-Bo(School of Artificial Intelligence,Henan University,Kaifeng 475001,China;School of Computer and Information Engineering,Henan University,Kaifeng 475001,China)
出处 《计算机系统应用》 2022年第4期260-267,共8页 Computer Systems & Applications
基金 河南省教育厅科学技术研究重点项目(19A413006) 河南大学研究生教育创新与质量提升计划(SYL20010101) 河南省软科学计划(202400410097)。
关键词 目标跟踪 快速移动 核相关滤波 粒子滤波 形变 target tracking fast motion kernel correlation filter particle filter deformation
  • 相关文献

参考文献3

二级参考文献65

  • 1张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 2贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 3杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 4Geronimo D, Lopez A, Sappa A, et al. Survey of pedestrian de- tection for advanced driver assistance systems[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 ( 7 ) : 1239- 1258.
  • 5Dollfr P,Wojek C,Schiele B,et al. Pedestrian detection:an e- valuation of the state of the art.IEEE, Trans. on Pattern Analysis and Machine InteUigence,2011,99:1 - 20.
  • 6Aggarwal J, Ryoo M. Human activity analysis: a review[J]. ACM Computing Surveys,2011,43(3),16:1-47.
  • 7Reilly V, Solmaz B, and Shah M. Geometric constraints for hu- man detection in aerial hnagery[ A] .In Proc. ECCV[C] ,2010.
  • 8Andfiluka M, Schnitzspan P, Meyer J, et al. Vision based victim detection from unmanned aerial vehicles [ A ]. In Proc. IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS) [ C]. Talpei, Taiwan, 2010.
  • 9Dollar P, Belongie S, Pemna P. The fastest pedeslrian detector in the west[A]. In Proc. BMVC[C] ,2010.
  • 10Enzweiler M, Gavrila D. Monocular pedestrian detection: sur- vey and experiments[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2009,31 (12) :2179 - 2195.

共引文献366

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部