期刊文献+

多无人直升机协作搬运控制技术研究 被引量:1

Research on Cooperative Transportation Control Technology with Multi-unmanned Helicopters
下载PDF
导出
摘要 随着多无人机协同控制技术的迅猛发展,多无人机悬挂运输飞行成为国内外研究的热点。针对多无人直升机协作悬挂搬运的绳索摆动问题和轨迹控制问题,设计了基于最小学习参数神经网络的动态面轨迹控制方法。首先,建立了多无人直升机协作悬挂搬运系统的非线性动力学模型。然后,把对无人直升机动力学特性和稳定性能影响较大且无法测量的各绳索拉力作为扰动,构建最小学习参数神经网络估计器进行估计,并在控制设计中予以补偿。然后,提出一种基于最小学习参数神经网络的动态面轨迹控制方法。同时,分析了轨迹控制系统的闭环稳定性。最后,进行数值仿真的验证。结果表明,协作无人直升机能在0.5 s后迅速跟踪各自轨迹指令,并使跟踪轨迹的平均相对误差小于0.2%,从而实现精准协作搬运。本文提出的多无人直升机轨迹控制方法为进一步研究多无人机协同轨迹控制提供参考依据。 With the rapid development of multi-UAVs cooperative control technology, multi-UAVs suspension transport flight has become a hot research topic at home and abroad. In this paper, a dynamic surface trajectory control method based on neural network with minimum learning parameters is proposed for the cable-suspended swing problem and trajectory control problem of multi-unmanned helicopters cooperative suspension handling control. Firstly, the nonlinear dynamic model of multi-unmanned helicopters cooperative suspension transportation system is established.The unmeasurable cable tension, which will greatly impact the system dynamics and stability, is taken as the disturbance and estimated by the minimal-learning-parameter neural network estimator. Then, a dynamic surface trajectory control method based on neural network with minimum learning parameters is proposed. At the same time, the closed-loop stability of the trajectory control system is analyzed. Finally, the results of numerical simulation show that the cooperative unmanned helicopters can quickly track their trajectory instructions after 0.5 s, and make the average relative error of tracking trajectory less than 0.2%, so as to realize accurate cooperative handling. The trajectory control method of multi-unmanned helicopters proposed in this paper provides a reference basis for the further study of multi-UAVs cooperative trajectory control.
作者 苏子康 陈嘉 邢卓琳 SU Zikang;CHEN Jia;XING Zhuolin(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;School of Automation and Software Engineering,Shanxi University,Taiyuan 030013,China)
出处 《无人系统技术》 2022年第2期33-42,共10页 Unmanned Systems Technology
基金 国家自然科学基金(61903190) 航空科学基金(2019ZA052006) 江苏省自然科学基金(BK20190401) 中国博士后科学基金资助项目(2020M681588) 中央高校基本科研业务费专项资金资助(NT2020005) 江苏省博士后科研资助计划(2021K428C)。
关键词 多无人机 协作搬运 刚体吊挂 神经网络 轨迹控制 干扰估计 动态面控制 Multi-unmanned Helicopters Cooperative Transportation Rigid-Body Slung-Load Neural Network Trajectory Control Disturbance Estimation Dynamic Surface Control
  • 相关文献

参考文献7

二级参考文献73

共引文献37

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部