期刊文献+

基于SVDD和PF的剩余使用寿命预测方法研究 被引量:1

Remaining Useful Life Prediction Method Based on SVDD and PF
下载PDF
导出
摘要 通常情况下剩余使用寿命(Remaining Useful Life, RUL)预测的实现都是基于各种传感器监测得来的数据,如何从具有过程噪声的连续采集的大量数据中提取退化特征来监测系统的性能退化趋势,从而准确地预测出RUL是一项挑战。因此,提出了一个基于支持向量数据描述(Support Vector Data Description, SVDD)和粒子滤波(Particle Filter, PF)的RUL预测方法。首先,利用SVDD从大量历史数据中提取一个可以反映系统性能退化趋势的健康指标;其次,针对健康指标的退化趋势构建一个退化模型,同时可以相应地确定一个故障阈值;然后,基于PF算法和自动确定的故障阈值来实现RUL的准确预测;最后,利用航空发动机退化数据集验证了所提出方法的有效性和优越性。 In general, the implementation of remaining useful life(RUL) is based on data monitored by various sensors.However, it is a challenge to extract the degradation characteristics from the continuously collected large amount of data with process noise to monitor the performance degradation trend of the system, and then accurately predict RUL.Therefore, a RUL prediction method based on support vector data description(SVDD) and particle filter(PF) is proposed.Firstly, SVDD is used to extract a health indicator that can reflect the degradation trend of the system performance from a large amount of historical data.Secondly, a degradation model is constructed according to the degradation trend of health indicators, and a fault threshold can be determined accordingly.Then, the accurate prediction of RUL is realized based on PF algorithm and automatically determined fault threshold.Finally, the effectiveness and superiority of the proposed method are verified by using the aero-engine degradation data set.
作者 焦瑞华 马欣 李晓猛 董智超 JIAO Rui-hua;MA Xin;LI Xiao-meng;DONG Zhi-chao(AVIC Xi'an Aviation Brake Technology Co.,Ltd.,Xi'an 71004&China)
出处 《测控技术》 2022年第4期42-47,77,共7页 Measurement & Control Technology
基金 中国博士后科学基金(2010M692507)。
关键词 故障预测 健康指标 剩余使用寿命 支持向量数据描述 粒子滤波 fault prediction health indicator remaining useful life support vector data description particle filter
  • 相关文献

参考文献3

二级参考文献97

  • 1李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 2JAZWINSKI A H. Stochastic Processes and Filtering Theory[M]. New York: Academic Press, 1970.
  • 3ANDERSON B D, MOORE J B. Optimal Filtering [ M]. New Jersey: Prentice-Hall, 1979.
  • 4BLOM H A P, BAR-SHALOM Y. The interacting multiple model algorithm for systems with Markovian switching coefficients [ J]. IEEE Trans on Automatic Control, 1988, 33 (8) :103 - 123.
  • 5BUCY R S, SENNE K D. Digital synthesis of nonlinear filters [ J ]. Automatica, 1971 , 7 ( 3 ) :287 - 298.
  • 6HAMMERSLEY J M, MORTON K W. Poor man's Monte Carlo [J]. J of the Royal Statistical Society B, 1954, 16( 1 ) :23 -38,
  • 7HANDSCHIN J E, MAYNE D Q. Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering [J].Int J Control, 1969, 9(5): 547-559.
  • 8ZARITSKII V S, SVETNIK V B, SHIMELEVICH L I. Monte-Carlo techniques in problems of optimal information processing [J]. Automation and Remote Control, 1975, 36 (3) :2015 -2022.
  • 9GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceedings-F, 1993, 140(2) :107 - 113.
  • 10LIU J S, CHEN R. Sequential Monte Carlo methods for dynamic systems [ J ]. J of the American Statistical Association,1998, 93(443) :1032 -1044.

共引文献341

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部