期刊文献+

基于二次关键点匹配的药盒位姿估计方法 被引量:4

Research on Pose Estimation Method of Medicine Box Based on Secondary Key Point Matching
下载PDF
导出
摘要 针对药品自动拣选过程中出现的位姿估计难度大、效率低等问题,提出一种平面分割与关键点匹配相结合的位姿估计方法.首先使用点云层次聚类算法对平面区域进行分割,并利用改进的二次关键点匹配方法对各线程中的药盒进行识别与定位,便于多线程处理.然后采用基于最小二乘的点云平面法向量估计方法实现药盒的姿态重建.实验采集存在视点变化、旋转变换和尺度变化的600幅图像进行测试,实验结果表明药盒位姿估计速度可达11帧/s,定位偏差小于5 mm,姿态估计偏差在2°以内.因此,所提方法是高效的,可以准确地识别药盒的位姿. Aiming at the difficulty and low efficiency of pose estimation in the process of automatic drug picking,a pose estimation method combining plane segmentation and key point matching is proposed.First,a point cloud hierarchical clustering algorithm is used to segment the plane area,and the improved secondary key point matching method is used to identify and locate the pill box in each thread,which is convenient for multi-thread processing.Then the point cloud plane normal vector estimation method based on least squares is used to realize the posture reconstruction of the pill box.600 images with viewpoint change,rotation transformation and scale change were collected for testing,the experimental results show that the pose estimation speed of the medicine box can reach 11 frames/s,the positioning deviation is less than 5 mm,and the pose estimation deviation is within 2°.So the method is efficient and can accurately identify the pose of the medicine box.
作者 杨旭升 王帅炀 张文安 仇翔 Yang Xusheng;Wang Shuaiyang;Zhang Wen’an;Qiu Xiang(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第4期570-580,共11页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(62173305,61903335)。
关键词 目标检测 平面分割 关键点匹配 位姿估计 target detection plane segmentation key point matching pose estimation
  • 相关文献

参考文献9

二级参考文献85

  • 1张贻弓,吴耀华.双拣货区自动分拣系统品项分配优化[J].机械工程学报,2009,45(11):152-157. 被引量:16
  • 2段峰,王耀南,刘焕军.基于机器视觉的智能空瓶检测机器人研究[J].仪器仪表学报,2004,25(5):624-627. 被引量:28
  • 3刘良江,王耀南.灰度直方图和支持向量机在磁环外观检测中的应用[J].仪器仪表学报,2006,27(8):840-844. 被引量:7
  • 4刘国才,王耀南.多层Mumford-Shah向量值图像分割、去噪与重建模型[J].自动化学报,2007,33(6):602-607. 被引量:5
  • 5Paolini R, Rodriguez A, Srinivasa S S, Mason M T. A data-driven statistical framework for post-grasp manipulation. The International Journal of Robotics Research, 2014, 33(4):600-615.
  • 6Droniou A, Ivaldi S, Sigaud O. Deep unsupervised network for multimodal perception, representation and classification. Robotics and Autonomous Systems, 2015, 71(9):83-98.
  • 7Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507.
  • 8Bengio Y. Learning deep architectures for AI. Foundations and TrendsoledR in Machine Learning, 2009, 2(1):1-127.
  • 9L?ngkvist M, Karlsson L, Loutfi A. A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 2014, 42:11-24.
  • 10Erhan D, Bengio Y, Courville A, Manzagol P A, Vincent P, Bengio S. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 2010, 11:625-660.

共引文献257

同被引文献40

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部