期刊文献+

光伏能源高效利用研究 被引量:5

Research on efficient utilization of photovoltaic energy
下载PDF
导出
摘要 光伏发电大规模并网给电网的稳定运行带来巨大挑战,光伏发电系统功率输出具有非线性、间接波动性和不确定性等特点,在未来光伏发电一体化程度极高的电力系统中,不仅要在不出现电力短缺的情况下保持供需平衡,还要尽可能多地利用光伏能源,光伏功率预测和储能装置在电力系统运行中的应用就是必不可少的一环。提出了一种基于光伏功率预测来确定和修改电池储能系统充放电时间表和热发电机组组合的方法,通过数值模拟对所提出的方法进行了评估。结果表明,该方法可以减少能量不足和光伏消减问题。 Large-scale grid-connected photovoltaic power generation brings great challenges to stable operation of power grid.The power output of photovoltaic power generation system has characteristics of nonlinear,indirect volatility and uncertainty.In the future power system with high degree of integration of photovoltaic power generation,not only balance between supply and demand should be maintained without power shortage,but also photovoltaic energy should be used as much as possible.Therefore,application of photovoltaic power prediction and energy storage devices in power system operation is an essential part.In this paper,a method based on photovoltaic power prediction is proposed to determine and modify charging and discharging schedule of battery energy storage system and combination of thermal power units.The proposed method is evaluated by a year of numerical simulation.The results show that this method can reduce the problems of insufficient energy and photovoltaic reduction.
作者 孙立新 Sun Lixin(Inner Mongolia Electric Power Survey and Design Institute Co.,Ltd.,Hohhot 010020,China)
出处 《能源与环保》 2022年第4期154-160,共7页 CHINA ENERGY AND ENVIRONMENTAL PROTECTION
基金 国家自然科学基金(20AZD018)。
关键词 光伏发电 电池储能系统 火力发电机 光伏功率预测 photovoltaic power generation battery energy storage system thermal generator photovoltaic power prediction
  • 相关文献

参考文献10

二级参考文献143

  • 1董雷,周文萍,张沛,刘广一,李伟迪.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45. 被引量:76
  • 2高亚静,周明,李庚银,李睿,肖利民.基于马尔可夫链和故障枚举法的可用输电能力计算[J].中国电机工程学报,2006,26(19):41-46. 被引量:31
  • 3周德佳,赵争鸣,吴理博,袁立强,孙晓瑛.基于仿真模型的太阳能光伏电池阵列特性的分析[J].清华大学学报(自然科学版),2007,47(7):1109-1112. 被引量:117
  • 4Safie F M, Probabilistic modeling of solar power systems[C]// Reliability and Maintainability Symposium. Atlanta, Georgia, USA: IEEE, 1989: 425-430.
  • 5Tina G, Gagliano S, Raiti S. Hybrid solar wind power system probabilistic modeling for long-term performance assessment[J]. Solar Energy, 2006, 80(5): 578-588.
  • 6Chowdhury B H. Central-station photovoltaic plant with energy storage for utility peak load leveling[C]//Energy Conversion Engineering Conference. Washington DC, USA: Institute of Electrical and Electronics Engineers, 1989: 731-736.
  • 7Deshmukh M K, Deshmukh S S. Modeling of hybrid renewable energy systems[J]. Renewable and Sustainable Energy Reviews, 2008, 12(1): 235-249.
  • 8Kroposki B, Emery K, Myers D, et al. A comparison ofphotovoltaic module performance evaluation methodologies for energy ratings[J]// Proceedings of lth WCPEC. Hawaii, USA, 1994: 5-9.
  • 9Li Yingzi, Niu Jincang, Ru Luan, et al. Research of multi-power structure optimization for grid-connected photovoltaic system based on Markov decision-making model[C]//lnternational Conference on Electrical Machines and Systems. Wuhan, China, 2008: 2607-2610.
  • 10Li Yingzi, Luan Ru, Niu Jincang. Forecast of power generation for grid-connected photovoltaic system based on grey model and Markov chain[C]//3rd IEEE Conference on Industrial Electronics and Applications. Singapore, 2008: 1729-1733.

共引文献394

同被引文献36

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部