期刊文献+

金刚石晶界辅助石墨烯沉积的成核机理仿真 被引量:2

Simulation research on nucleation mechanism of graphene deposition assisted by diamond grain boundary
下载PDF
导出
摘要 石墨烯在新基材上的生长一直是被关注的焦点,而在以金刚石多晶体为基底沉积石墨烯的成核机理方面的研究对石墨烯大规模的制备具有重要的现实意义.本文采用反应性分子动力学仿真技术,模拟了镍催化双晶金刚石辅助石墨烯沉积生长的过程,研究了金刚石晶界对石墨烯成核生长过程中动力学行为的影响.研究结果表明晶界碳原子可作为补充碳源扩散至镍自由表面,参与石墨烯的成核生长.论文探究了温度对碳原子扩散行为的影响,发现当沉积温度为1700 K时,利于晶界碳原子在镍晶格中扩散,有效提高石墨烯成核密度;探究了沉积碳源流量对石墨烯表面质量影响,发现1700 K下采用较低的碳沉积速率1 ps^(–1)有利于获得最佳的石墨烯表面质量.本文的研究结果不仅为金刚石晶界辅助石墨烯沉积生长提供了有效的理论模型和机理解析,还揭示了沉积温度和沉积碳源流量对生长石墨烯表面质量的影响规律,为石墨烯/金刚石多晶体异质结构在超精密制造和微电子领域的实际应用提供理论基础. The growth of high-quality graphene is always a focused issue in the field of two-dimensional materials, and the growth of graphene on brand new substrates has received considerable attention from scholars especially.The research on the nucleation mechanism of graphene deposited on a polycrystalline diamond substrate is of significance in the large-scale preparation of graphene in practice. Here in this work, the direct growth without transfer process of graphene on a diamond substrate is used to obtain the high-quality graphene. The reactive molecular dynamics simulation technology is adopted to imitate the process of graphene deposition and growth on bi-crystal diamond assisted by nickel catalyzed at an atomic level. The effect of the bi-crystal diamond grain boundary on the dynamic behavior of graphene nucleation and growth process is studied. The results demonstrate that the grain boundary carbon atoms can be used as a supplementary carbon source to diffuse into the nickel free surface and participate in the nucleation and growth of graphene. Furthermore, the effect of temperature on the diffusion behavior of carbon atoms is explored, finding that high temperature facilitates the dissociation of atoms in the grain boundary. When the deposition temperature equals 1700 K, it is most conducive to the diffusion of grain boundary carbon atoms in the nickel lattice, which effectively enhances the nucleation density of graphene. Besides, the effect of the deposition carbon source flow rate on the surface quality of graphene is explored, finding that the high-quality graphene surface can be obtained by adopting a lower carbon deposit rate of 1 ps^(–1) at 1700 K. In brief, the research results obtained not only provide an effective theoretical model and analysis of the mechanism for diamond grain boundary assisted graphene deposition and growth, but also reveal the regular pattern of influence of deposition temperature and deposition carbon source flow rate on the surface quality of synthesized graphene. The present study can lay a theoretical foundation for the fabrication and application of new functional graphene-polycrystalline diamond heterostructures in the fields of ultra-precision manufacturing and microelectronics.
作者 陈善登 白清顺 窦昱昊 郭万民 王洪飞 杜云龙 Chen Shan-Deng;Bai Qing-Shun;Dou Yu-Hao;Guo Wan-Min;Wang Hong-Fei;Du Yun-Long(School of Mechanical and Electrical Engineering,Harbin Institute of Technology,Harbin 150000,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2022年第8期251-259,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:52075129) 国家自然科学基金委员会-中国工程物理研究院联合基金(批准号:U2030109)资助的课题~。
关键词 石墨烯 金刚石晶界 沉积生长 分子动力学 graphene diamond grain boundary deposition and growth molecular dynamics
  • 相关文献

参考文献1

二级参考文献21

  • 1王文荣,周玉修,李铁,王跃林,谢晓明.2012,物理学报,61,038702.
  • 2Novoselov K S,Geim A K,Morozov S V,Jiang D,Zhang Y,Dubonos S V,Grigorieva I V,Firsov A A.2004.Science 306 666.
  • 3Liao L,Lin Y C,Bao M,Cheng R,Bai J,Liu Y,Qu Y,Wang K L,Huang Y,Duan X 2010 Nature 467 305.
  • 4Bae S,Kim H,Lee Y,Xu X,Park J S,Zheng Y,Balakrishnan J,Lei T,Kim H R,Song Y I,Kim Y J,Kim K S,Ozyilmaz B,Ahn J H,Hong B H,Iijima S 2010 Nat.Nanotechnol.5 574.
  • 5Qin M M,Ji W,Feng Y Y,Feng W 2014 Chin.Phys.B 23 028103.
  • 6Stoller M D,Park S,Zhu Y,An J,Ruoff R S 2008 Nano Lett.8 3498.
  • 7马丽,谭振兵,谭长玲,刘广同,杨昌黎,吕力.2011.物理学报,60: 107302.
  • 8Park S,An J,Jung I,Piner R D,An S J,Li X,Velamakanni A,Ruoff R S 2009 Nano Lett.9 1593.
  • 9黄乐旭,陈远富,李萍剑,黄然,贺加瑞,王泽高,郝昕,刘竞博,张万里,李言荣.2012.物理学报,61 :156103.
  • 10Li J,Wang L,Feng Z H,Yu C,Liu Q B,Dun S B,Cai S J.2012.Chin.Phys.B 21 097304.

共引文献8

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部