期刊文献+

一种六旋翼无人机的多模型容错控制方法 被引量:2

A Multi-model Fault-tolerant Control Method of Six-rotor UAV
下载PDF
导出
摘要 针对经典伪逆算法在处理无人机电机完全失效故障时容易出现电机转速分配超出硬件约束的问题,提出了一种迭代修正方案。在发生故障时利用伪逆算法对正常电机转速进行初步分配;对超出电机硬件约束的转速进行修正,通过多次迭代修正保证转速分配的合理性。仿真结果表明,该方法能对正常电机转速进行合理分配,有效保证六旋翼无人机在发生完全失效故障时的稳定飞行和安全着陆。 An iterative correction scheme is proposed to solve the problem that the motor of UAV rotation speed allocation exceeds the hardware constraint when the classic pseudo-inverse algorithm is used to deal with the complete failure of motors.Firstly,the pseudo-inverse algorithm is used to preliminarily allocate the normal rotation speed of the motor when a rotor fails.Secondly,the rotation speed beyond the constraints of the motor hardware is corrected,and multiple iteration corrections are made to ensure the rationality of rotation speed allocation.The simulation results show that the method can reasonably allocate the normal rotation speed of motor,and can effectively guarantee the stable flight and safe landing of the six-rotor UAV in the event of a complete time failure.
作者 徐雪松 倪赟 吴仪政 XU Xue-song;NI Yun;WU Yi-zheng(School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China)
出处 《火力与指挥控制》 CSCD 北大核心 2022年第3期45-50,共6页 Fire Control & Command Control
基金 国家自然科学基金资助项目(61763012)。
关键词 六旋翼无人机 容错控制 迭代修正 伪逆分配 six-rotor UAV fault-tolerant control iterative correction pseudo inverse allocation
  • 相关文献

参考文献7

二级参考文献65

  • 1袁学敏,曹科才.基于Lyapunov的六旋翼无人机姿态镇定控制技术的研究[J].系统仿真学报,2015,27(12):3037-3043. 被引量:2
  • 2THEIBING N,KAHN G,SCHULTE A. Cognitive automation based guidance and operator assistance for semi-autonomousmission accomplishment of the UAV demonstrator SAGITTA[M]. Deutsche GesellschaftfürLuft-und Raumfahrt-Lilienthal-Oberth eV,2013.
  • 3United States Department of Defense.Unmanned systems integratedroadmap,FY2013-2038[M].United States Departmentof Defense,2013.
  • 4LAWSON C P,MONTERZINO G A. Design manufacturingintegration and flight testing of a health monitoring system fora prototype unmanned airborne vehicle[J].Proceedings of theInstitution of Mechanical Engineers,Part G:Journal ofAerospace Engineering,2014,228(7):997-1009.
  • 5YANG W S,SEBASTIAN A. An onboard monocular visionsystem for autonomous takeoff,hovering and landing of a microaerial vehicle [J].Journal of Intelligent & Robotic Systems,2013,69(1-4):499-515.
  • 6BREZOESCU A,CASTILLO P,LOZANO R. Wind estimationfor accurate airplane path following applications[C]//UnmannedAircraft Systems(ICUAS),2013 International Conferenceon. IEEE,2013:869-874.
  • 7PETHICH J,SUBBARAO K. On-board wind speed estimationfor uavs [C]//AIAA Guidance,Navigation,and ControlConference,2011,10.2514/6.2011-6223.
  • 8SUJIT P,SARIPALLI S,SOUSA J. Unmanned aerial vehiclepath following:A survey and analysis of algorithms forfixed-wing unmanned aerial vehicless [J].Control Systems,IEEE,2014,34(1):42-59.
  • 9RATNOO,A,SUJIT P B,et al. Optimal path following forhigh wind flights [C]//18th IFAC World Congress,Italy:Milano,2011:12985-12990.
  • 10BALABAN E,BANSAL P,STOELTING P,et al,A diagnosticapproach for electro-mechanical actuators inaerospace systems [C]//Aerospace Conference,2009IEEE,2009:1-13.

共引文献25

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部