期刊文献+

基于全卷积网络U-Net宫颈癌近距离治疗三维剂量分布预测研究 被引量:2

Study of three-dimensional dose distribution prediction in cervical cancer brachytherapy based on U-Net fully convolutional network
原文传递
导出
摘要 目的基于全卷积网络U-Net预测宫颈癌近距离治疗(BT)感兴趣区(ROI)三维剂量分布,并评估其预测精度。方法首先选取100例宫颈癌腔内结合组织间插植病例作为整个研究数据集,并将其划分为训练集(72例)、验证集(8例)、测试集(20例);然后利用U-Net建立模型,将是否包含宫腔管及插针作为区分因素训练两个模型;最后对20例测试集病例进行预测,并进行对比分析。模型的性能通过ΔD90%、ΔD_(2cm)^(3)以及平均绝对离差共同评估。结果包含与未包宫腔管与插植针的模型相比,直肠的ΔD_(2cm)^(3)上升了(16.83±1.82)cGy(P<0.05),其余ROI的ΔD90%或ΔD_(2cm)^(3)均相近(均P>0.05);高危靶区、直肠、乙状结肠、小肠、膀胱平均绝对离差分别上升了(11.96±3.78)、(11.43±0.54)、(24.08±1.65)、(17.04±7.17)、(9.52±4.35)cGy(均P<0.05);中危靶区的下降了(120.85±29.78)cGy(P<0.05);6个ROI的平均绝对离差的平均值下降了(7.8±53)cGy(P<0.05),更接近实际计划。结论利用全卷积网络U-Net可以实现宫颈癌患者BT的三维剂量分布预测;结合宫腔管与插植针作为输入参数,比单一使用ROI结构作为输入能得到更准确的预测结果。 Objective Topredict the three-dimensional dose distribution of regions of interest(ROI)with brachytherapy for cervical cancer based on U-Net fully convolutional network,and evaluate the accuracy of prediction model.Methods First,100 cases of cervical cancer intracavity combined with interstitial implantation were selected as the entire research data set,and divided into the training set(n=72),validation set(n=8),and test set(n=20).Then the U-Net was used to construct two models based on whether the uterine tandem and the implantation needles were included as the distinguishing factors.Finally,dose distribution of 20 cases in the test set were predicted using the trained model,and comparative analysis was performed.The performance of the model was jointly evaluated byΔD90%,ΔD_(2cm)^(3)and the mean absolute deviation(MAD).Results Compared with the model without the uterine tandem and the implantation needles,theΔD_(2cm)^(3)of the rectum was increased by(16.83±1.82)cGy(P<0.05),andtheΔD90%orΔD_(2cm)^(3)of the other ROI were not different significantly(all P>0.05).The MAD of the high-risk clinical target volume,rectum,sigmoid,small bowel,and bladder was increased by(11.96±3.78)cGy,(11.43±0.54)cGy,(24.08±1.65)cGy,(17.04±7.17)cGy and(9.52±4.35)cGy,respectively(all P<0.05).The MAD of the intermediate-risk clinical target volume was decreased by(120.85±29.78)cGy(P<0.05).The mean value of MAD for all ROI was decreased by(7.8±53)cGy(P<0.05),which was closer to the actual plan.Conclusions U-Net fully convolutional network can be used to predict three-dimensional dose distribution of patients with cervical cancer undergoing brachytherapy.Combining the uterine tube with the implantation needles as the input parameters yields more accurate predictions than a single use of the ROI structure as the input.
作者 向艺达 周剑良 白雪 王彬冰 单国平 Xiang Yida;Zhou Jianliang;Bai Xue;Wang Binbing;Shan Guoping(School of Nuclear Science and Technology,University of South China,Hengyang 421000,China;Department of Radiation Physics,Zhejiang Cancer Hospital,Cancer Hospital of University of Chinese Academy of Sciences,Hangzhou 310022,China)
出处 《中华放射肿瘤学杂志》 CSCD 北大核心 2022年第4期359-364,共6页 Chinese Journal of Radiation Oncology
基金 国家自然科学基金(12005190)。
关键词 全卷积网络 三维剂量分布预测 宫颈肿瘤/近距离疗法 Fully convolutional network Three-dimensional dose distribution prediction Cervical neoplasm/brachytherapy
  • 相关文献

参考文献6

二级参考文献10

共引文献41

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部