期刊文献+

一种顾及纹理特征的自适应密集匹配方法 被引量:2

An adaptive dense matching method considering texture features
原文传递
导出
摘要 针对半全局立体匹配(SGM)算法对于弱纹理区域误匹配率较高的问题,该文提出了一种顾及纹理特征的自适应密集匹配方法,也是SGM算法与该文提出的一种跳过噪声点的区域增长自适应窗口匹配算法的结合。首先,以某一待匹配点为中心构建一个一定大小的初始窗口。其次,计算窗口内其余各点与待匹配点灰度差的绝对值之和,根据该值的大小判断纹理丰富程度。然后,根据纹理的丰富程度自适应地选择匹配算法,对于纹理丰富区域,采用SGM算法进行匹配;对于弱纹理区域,则采用该文提出的一种跳过噪声点的区域增长自适应窗口匹配算法。最后,利用Middleburry网站提供的标准测试图像对进行试验分析,结果表明:该算法能在有效提高SGM算法在影像弱纹理区域的匹配精度的同时,降低程序运行的时间,且在一定范围内,图像弱纹理区域占比越大,效果越明显。 Aiming at the problem of high mismatch rate of semi-global stereo matching(SGM) algorithm for weak texture region matching,an adaptive dense matching method Considering texture features was proposed,which was a combination of semi-global stereo matching algorithm and a region growth adaptive window matching algorithm that skips noise points proposed in this paper.Firstly,an initial window of a certain size was constructed with a certain matching point as the center.Secondly,the sum of the absolute values of the gray difference between the remaining points in the window and the points to be matched were calculated,and the texture richness was judged according to the size of the value.Thirdly,the matching algorithm was selected adaptively according to the texture richness.For texture rich areas,SGM algorithm was used for weak texture regions,an adaptive window matching algorithm for region growth skipping noise points was used.Finally,the experimental analysis was carried out by using the standard test image provided by the Middleburry website.The results showed that the algorithm could effectively improve the matching accuracy of the SGM algorithm in the weak texture region of the image and reduce the running time of the program.
作者 马东岭 毛力波 吴鼎辉 石壮 MA Dongling;MAO Libo;WU Dinghui;SHI Zhuang(School of Surveying and Geo-Informatics,Shandong Jianzhu University,Jinan 250101,China)
出处 《测绘科学》 CSCD 北大核心 2022年第2期70-78,101,共10页 Science of Surveying and Mapping
基金 山东省自然科学基金项目(ZR2020MD025) 山东省高等学校科技计划项目(J18KA183) 山东省研究生导师指导能力提升项目(SDYY17070)。
关键词 半全局立体匹配 区域增长 自适应窗口 图像纹理 噪声点 semi-global stereo matching regional growth adaptive window image texture noise point
  • 相关文献

参考文献6

二级参考文献47

  • 1Anandan P.A computational framework and an algorithm for the measurement of visual motion[J].International Journal of Computer Vision,1989,2(3):283-310.
  • 2Kanade T,Okutomi M.A stereo matching algorithm with an adaptive window:Theory and experiment[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1994,16(9):920-932.
  • 3Fusiello A,Roberto V.Efficient stereo with multiple windowing[A].IEEE Conference on Computer Vision and Pattern Recognition[C].San Juan,1997:858-863.
  • 4Shimizu M,Okutomi M.Precise sub-pixel estimation on area-based matching[A].8th International Conference on Computer Vision[C].Vancouver,2001:90-97.
  • 5Veksler O.Fast variable window for stereo correspondence using integral images[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].Madison,2003:556-561.
  • 6Intille S,Bobick A.Disparity-space images and large occlusion stereo[A].European Conference on ComputerVision[C].Stockholm,1994:179-186.
  • 7Belhumeur P N.A bayesian-approach to binocular stereopsis[J].Computer Vision,1996,19(3):237-260.
  • 8Intille S,Bobick A.Incorporating intensity edges in the recovery of occlusion regions[A].International Conference on Pattern Recognition[C].Jerusalem,1994:674-677.
  • 9Fua P.A parallel stereo algorithm that produces dense depth maps and preserves image features[J].Machine Vision and Applications,1993,69(1):35-49.
  • 10SUN Chang-ming.Fast stereo matching using rectangular subregioning and 3D maximum-surface techniques[J].International Journal of Computer Vision,2002,47(3):99-117.

共引文献51

同被引文献21

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部