期刊文献+

基于深度挖掘技术的ERP系统数据录入误差检测方法

ERP system data entry error detection method based on deep mining technology
下载PDF
导出
摘要 目前设计的ERP系统数据量大,录入误差检测方法有限,导致检测的误差数值较低。为了解决上述问题,基于深度挖掘技术研究了一种新的ERP系统数据录入误差检测方法。分析决策者和执行者之间的关系并进行深度挖掘,通过信息处理和数据录入集中控制数据参数;根据数据的特征性对环境中的障碍物划分类簇,多边的点集聚类满足ERP系统的分割要求。最后确定样本阈值,分析误差总值。实验结果表明,基于深度挖掘技术的ERP系统数据录入误差检测方法能够有效检测大量数据,在提高检测效率的同时,提高了检测的误差数值。 Currently designed ERP system has a large amount of data and limited detection methods of input error,which leads to a low value of detection error.In order to solve the above problems,a new method of data entry error detection in ERP system is researched based on deep mining technology.Analyze the relationship between the decision-maker and the executive and conduct in-depth mining,and centrally control the data parameters through information processing and data entry.The obstacles in the environment were divided into clusters according to the characteristics of the data,and the multi-lateral point cluster categories met the segmentation requirements of the ERP system.Finally,the sample threshold is determined and the total error value is analyzed.The experimental results show that the data entry error detection method of ERP system based on deep mining technology can effectively detect a large number of data,improve the detection efficiency,and improve the detection error value.
作者 孙利民 SUN Limin(HBIS Group Co.,Ltd.,Shijiazhuang 050000,China)
出处 《电子设计工程》 2022年第8期119-122,127,共5页 Electronic Design Engineering
关键词 深度挖掘 ERP系统 数据录入误差 误差检测 点集聚类 deep mining ERP system data entry error error detection point gather class
  • 相关文献

参考文献15

二级参考文献124

共引文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部