摘要
英语学习者的词汇学习效率低下问题已引起共鸣,针对英语智能词汇学习的推荐方式得到高度应用。文中通过分析自适应学习和学习风格的实质性特征,构建英语智能词汇推荐模型,结合聚类算法对模型进行优化设置,并通过统计学软件对系统性能进行可视化分析。通过实验验证,设计的英语智能词汇推荐系统的用户相似度阈值同年龄相似度权重的取值范围相同,二者都随着参数值的提高而不断上升,取值到0.8时,二者都获得最优数值。系统能够清楚展示学习对象在登录到系统后学习过的单词记录,包括该单词的使用次数,达到智能效果。
The low efficiency of English learners’vocabulary learning has aroused resonance,and the recommendation method for English intelligent vocabulary learning has been highly applied.By analyzing the essential characteristics of adaptive learning and learning style,the study constructs an English intelligent vocabulary recommendation model,optimizes the model combined with clustering algorithm,and visually analyzes the system performance through statistical software.The experiment verifies that the user similarity threshold of the English intelligent vocabulary recommendation system designed is the same as the weight range of age similarity.Both of them are rising with the increase of parameter value.When the value reaches 0.8,both of them get the optimal value.The system can clearly display the word records learned by the learning object in the login system,including the number of times of using the word,thus achieving the intelligent effect.
作者
杨虹
YANG Hong(School of Foreign Languages,Xianyang Normal University,Xianyang 712000,China)
出处
《电子设计工程》
2022年第8期180-184,共5页
Electronic Design Engineering
基金
咸阳师范学院科研项目2020年度课题(2020XSYH168)。
关键词
英语
智能词汇推荐系统
聚类算法
自适应学习
English
intelligent vocabulary recommendation system
clustering algorithm
adaptive learning