期刊文献+

应用邻域点信息描述与匹配的点云配准 被引量:11

Point cloud registration using neighborhood point information description and matching
下载PDF
导出
摘要 点云配准是现代制造业中逆向工程、机器视觉等技术的重要组成部分,其效率和精度对获取的产品数据模型有重要影响。为提高3D物体点云配准的精度和效率,提出一种应用邻域点信息描述与匹配(Neighborhood point information Description and Matching,NDM)的点云配准方法。首先,在三个半径比例下根据点的曲率变化、测量角度和特征值性质提取特征点;其次,计算改进的法向量夹角、点密度和曲率值,获取多尺度矩阵描述符;然后,为描述符建立k维树获取匹配关系,并提出几何特征约束和刚性距离约束组合,剔除错误点对,实现粗配准;最后,通过k维树改进迭代最近点(Iterative Closest Point,ICP)算法完成精确配准。本文设计了实际物体点云配准和斯坦福模型模拟真实物体配准两组实验。结果表明,本文算法解决了经典ICP的局限性,配准精度提高2~5个量级;相较于其他算法,实物点云配准中本文算法的配准精度至少提高29%,效率可提高54%;斯坦福模拟实验中,本文算法的配准精度提高1%~99%,配准耗时降低3%~94%,表明本文算法是一种有效的物体表面点云的配准方法,可以提高配准精度和效率,有较好的鲁棒性。 Point cloud registration is an important part of reverse engineering,machine vision and other technologies in modern manufacturing.Its efficiency and accuracy have an important impact on the acquisition of product data model.In order to improve the accuracy and efficiency of 3D object point cloud registration,a point cloud registration method using Neighborhood point information Description and Matching(NDM)is proposed.Firstly,under three radius ratios,feature points are extracted according to the change of curvature,measurement angle and eigenvalue property;Secondly,the improved normal vector angle,point density and curvature are calculated to obtain multi-scale matrix descriptor;Then,a k-dimensional tree is established for descriptors,and the matching relationship is preliminarily established.The combination of geometric feature constraint and rigid distance constraint is proposed to eliminate the wrong points;Finally,the k-tree improved iterative closest point(ICP)algorithm is used to complete the accurate registration.In this paper,two groups of experiments are designed,which are real object point cloud registration and Stanford model simulation real object registration,The results show that the algorithm solves the limitations of the classical ICP,and improving the registration accuracy by 2-5 orders of magnitude;Compared with other algorithms,the registration accuracy of this algorithm is improved by at least 29%,and the efficiency is increased by 58%;In the Stanford database simulation experiment,the registration accuracy is improved by 1%-99%,and the registration time is reduced by 3%-94%.It is proved that this algorithm is an effective registration method of point cloud on object surface,which can improve the registration accuracy and efficiency,and has good robustness.
作者 林森 张强 LIN Sen;ZHANG Qiang(College of Automation and Electrical Engineering,Shenyang Ligong University,Shenyang 110159,China;College of Electronic and Information Engineering,Liaoning Technology University,Huludao 125105,China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2022年第8期984-997,共14页 Optics and Precision Engineering
基金 国家自然科学基金项目(No.91648118,No.61473280,No.61991413) 辽宁省重点研发计划项目(No.2019JH2/10100014)。
关键词 逆向工程 机器视觉 点云配准 邻域点信息 迭代最近点 reverse engineering machine vision point cloud registration neighborhood point information iteration closest point
  • 相关文献

参考文献6

二级参考文献47

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:99
  • 2张学昌,习俊通,严隽琪.基于点云数据的复杂型面数字化检测技术研究[J].计算机集成制造系统,2005,11(5):727-731. 被引量:27
  • 3沈海平,达飞鹏,雷家勇.基于最小二乘法的点云数据拼接研究[J].中国图象图形学报,2005,10(9):1112-1116. 被引量:28
  • 4朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 5P J Besl, H D McKay. A method for registration of 3D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992, 14(2): 239-256.
  • 6R Yang, P Allen. Registering, integrating, and building CAD models from range data[C], IEEE International Conference on Roboticsand Automation, 1998, 4: 3115-3120.
  • 7何文峰,査红彬.基于平面特征的深度图像配准[J].中国人工智能进展,2003. 643-648.
  • 8M Pauly. Point Primitives for Interactive Modeling and Processing of 3D Geometry[D]. Zurich: Federal Institute of Technology(ETH) of Zurich, 2003.
  • 9K S A run, T S Huang, S D Blostein. Least—squares fitting of two 3D point sets[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, ] 987, 9(5): 698-700.
  • 100 D Faugeras, M Hebert. The representation, recognition, and locating 3D objects[J]. International Journal of Robotic Research,1986, 5(3): 27-52.

共引文献138

同被引文献75

引证文献11

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部